
Morph: Flexible Acceleration for 3D CNN-based
Video Understanding

Kartik Hegde†, Rohit Agrawal†, Yulun Yao, Christopher W. Fletcher
University of Illinois at Urbana-Champaign

{kvhegde2, rohita2, yuluny2, cwfletch}@illinois.edu

Abstract—The past several years have seen both an explosion
in the use of Convolutional Neural Networks (CNNs) and the
design of accelerators to make CNN inference practical. In the
architecture community, the lion share of effort has targeted CNN
inference for image recognition. The closely related problem of
video recognition has received far less attention as an accelerator
target. This is surprising, as video recognition is more compu-
tationally intensive than image recognition, and video traffic is
predicted to be the majority of internet traffic in the coming
years.

This paper fills the gap between algorithmic and hardware
advances for video recognition by providing a design space explo-
ration and flexible architecture for accelerating 3D Convolutional
Neural Networks (3D CNNs)—the core kernel in modern video
understanding. When compared to (2D) CNNs used for image
recognition, efficiently accelerating 3D CNNs poses a significant
engineering challenge due to their large (and variable over time)
memory footprint and higher dimensionality.

To address these challenges, we design a novel accelerator,
called Morph, that can adaptively support different spatial and
temporal tiling strategies depending on the needs of each layer
of each target 3D CNN. We codesign a software infrastructure
alongside the Morph hardware to find good-fit parameters to
control the hardware. Evaluated on state-of-the-art 3D CNNs,
Morph achieves up to 3.4× (2.5× average) reduction in energy
consumption and improves performance/watt by up to 5.1× (4×
average) compared to a baseline 3D CNN accelerator, with an
area overhead of 5%. Morph further achieves a 15.9× average
energy reduction on 3D CNNs when compared to Eyeriss.

Index Terms—3D Convolutional Neural Networks, Hardware/-
Software codesign, Video recognition, Dataflow, Hardware accel-
eration

I. INTRODUCTION

The rise of Convolutional Neural Networks (CNNs) [1], [2],
[3], [4] has marked tremendous progress in image recognition,
advancing the state-of-the-art in tasks ranging from handwritten
digit [5] to complex object recognition [6], [7]. At their core,
CNNs are compute intensive, parallel dot product operations.
Combined with their importance, this computation style has
made CNNs a natural target for hardware ASIC acceleration,
and a rich line of work has made large strides in this
direction [8], [9], [10], [11], [12], [13].

Given the recent progress in image recognition, a natural
question is whether similar strides have been made for the
related problem of video recognition. Like image recognition,
video understanding has received significant attention in the

This work was partially supported by NSF award CCF-1725734 and a
DARPA SDH contract.

†These two authors contributed equally

computer vision community at the algorithm level [14], [15],
[16], [17], [18], with numerous datasets being developed for
different domains [19], [20], [21], [22]. Current state-of-the-art
results are achieved using 3-dimensional (3D) CNNs, which
generalize (2D) CNNs used for image recognition to account
for the time dimension, thereby allowing the model to capture
spatio-temporal features. 3D CNNs use a similar style of
computation (i.e., parallel dot products with sliding window
data access patterns) as 2D CNNs and are likewise extremely
compute intensive.

Given the above, it is perhaps surprising that 3D CNNs have
not yet received attention as a target for acceleration in ASICs.
Video processing is an important workload, and video traffic is
predicted to account for 78% of all internet traffic by 2021 [23].
Additionally, a large number of real-life applications based on
video understanding, e.g., surveillance drones, self-driving cars
etc., mandate real-time video understanding, further showing
the need to provide hardware acceleration for 3D CNNs.

To bridge this gap, this paper studies hardware acceleration
for 3D CNN inference using ASICs, in performance- and
energy- constrained environments.

A. Challenges in Accelerating 3D CNN Inference

It is important to ask: given that 3D CNNs are a generaliza-
tion of 2D CNNs, can a 2D CNN accelerator (e.g., Eyeriss [8])
efficiently evaluate a 3D CNN? We find the answer is no, the
key reasons being that the temporal dimension in 3D CNNs
exposes new data reuse opportunities that cannot be captured
by, and significantly exacerbates certain design issues present
in, 2D CNN accelerators.

To the first point, contemporary 2D CNN accelerators are
designed to exploit spatial (width and height) data reuse
effectively [8]. However, 3D CNNs feature data reuse op-
portunities in both spatial dimensions within a frame and the
temporal dimension across frames. Without mechanisms to
take advantage of temporal data reuse close to the arithmetic
units, 2D accelerators must evaluate a 3D CNN “frame by
frame,” which incurs significant memory system overheads.

To the second point, we make several important observations
that collectively show how several design issues in 2D CNNs
get significantly more pronounced when working with 3D
CNNs.

Observation 1: Working set size exceeds on-chip memory.
Figure 1a shows the number of Bytes needed to store inputs
(containing activations) and filters (containing weights)—two

(a) Memory footprint comparison for different layers of representative 2D
and 3D CNNs. Assumes a 224× 224 input frame with 3 channels and
16 frames, convolved with a 3× 3 filter with 3 channels and 3 temporal
depth. We compare C3D and Alexnet as they have a similar structure,
but remark that more recent 2D CNNs such as ResNet have comparable
input/weight footprints.

(b) Average data reuse in 2D and 3D CNNs. Input activations and weights
are 1 Byte each.

Figure 1. Comparing popular 2D CNNs AlexNet [1], Inception [2] and ResNet [3] with 3D CNNs C3D [16], ResNet3D [24] and I3D [17].

data types in CNNs—for both modern 2D and 3D CNNs.
(Partial sums, the third major data type, are not shown.) Evident
from the figure, 3D CNN memory footprint for both data types
far exceeds the typical on-chip memory provisioned on energy-
efficient accelerators. Yet, 2D accelerators (e.g., [12], [13])
typically pin a specific data type (e.g., inputs) statically in
on-chip memory, expecting that data type to always fit. This
is sub-optimal in cases when the other data type (e.g., filters)
fits in on-chip memory, in which case the correct strategy is
to pin filters.

Observation 2: On-chip memory requirements vary dra-
matically. Again observed from Figure 1a, input and filter
memory requirements vary significantly across layers in the
case of 3D CNNs. Yet, 2D CNN hardware resources are
typically provisioned for the worst case layer (e.g., the input
memory in [12]). This design philosophy cannot be used
when designing for 3D CNNs, as memory fragmentation
overheads stemming from provisioning for the worst case will
be exacerbated.

Observation 3: On-chip energy is more pronounced, rela-
tive to off-chip energy. Figure 1b shows the ratio of multiply-
accumulate operations (MACCs) to memory footprint (sum
of input and filter storage) for 2D and 3D CNNs. This shows
that data reuse—the number of computations done per Byte
of data—is higher for 3D CNNs. This not only makes 3D
CNNs significantly more compute bound, but also reduces the
ratio of energy spent accessing the off-chip memory vs. overall
energy compared to 2D CNNs. Whereas off-chip accesses often
consume the majority of energy in 2D CNN acceleration [25],
the increased reuse in 3D CNNs means the major factors
governing on-chip energy—in particular efficiently managing
buffers and reuse—become more prominent.

B. This Paper

This paper proposes Morph: a novel accelerator for accel-
erating 3D CNN inference. Based on the above observations,
the key design decision we made when architecting Morph
was to maximize configuration-time flexibility, which allows
Morph hardware to adapt to each layer of each 3D CNN
it targets. Based on Observations 1 and 2, Morph hardware
can tile any (or all) 3D CNN data types and share on-chip
storage between tiles regardless of their size. Further, Morph
can change the order in which tiles are scheduled to processing
resources, both in time and space (also called “dataflow” [8]).
For example, when the input data footprint is small (see later
layers in Figure 1a), it is prudent to pin inputs in on-chip
memory and stream through the weights; vice versa for early
layers. Finally, based on Observation 3, Morph endows these
degrees of flexibility to multiple levels of on-chip buffering,
so as to maximize efficiency on-chip as well as off-chip.

To summarize, this paper makes the following contributions:

1) We design and implement Morph: a flexible 3D CNN
hardware accelerator. To our knowledge, Morph is the
first ASIC accelerator targeting 3D CNNs.

2) We codesign a software framework that finds proper
configuration-time parameters (tile sizes, loop order, loop
parallelism) for each layer of each 3D CNN that runs
on the Morph accelerator.

3) We evaluate Morph across multiple 3D and 2D CNNs,
comparing our final proposal to a less-flexible version of
our accelerator and to Eyeriss [8], a popular accelerator
for 2D CNNs. Evaluated on state-of-the-art 3D CNNs,
Morph achieves an average 2.5× reduction in energy
consumption and an average 5.1× improvement in
performance/watt compared to the less-flexible baseline.

Figure 2. 3D convolution operation on one input video.

Morph further achieves a 15.9× average energy reduction
on 3D CNNs when compared to Eyeriss. Lastly, we
implement Morph in RTL and synthesize the design in
a 32 nm process, finding the cost of flexibility to be 5%
area over a similarly-provisioned inflexible accelerator.

II. BACKGROUND

A. Methods for Video Understanding

Broadly, there are two categories of works in video un-
derstanding: hand-crafted and learning-based methods. Hand-
crafted methods evolved from their successful counterparts in
image recognition, such as STIP [26] and SIFT [27]. Several
early methods, e.g., [28], generated histogram descriptors
for spatio-temporal volumes to generate features. Subsequent
methods used hand-crafted approaches such as improved Dense
Trajectories [29] to further boost accuracy.

B. 3D Convolution

After the breakthrough in image recognition using convolu-
tional neural networks (CNNs) [1], CNNs and other learning-
based methods became the main approach for processing videos.
Applying 2D convolutions and temporal pooling over videos
was explored by [15]. Using frame-based spatial and optical
flow-based temporal streams of 2D convolutions was proposed
by [14]. [16], [18] proposed 3D convolutions to model spatio-
temporal features, which inspired significant follow-up work in
using 3D convolution and its derivatives in video understanding
[17], [30], [31], [32]. While there is no consensus on the best
method for video understanding, 3D CNNs currently hold the
state-of-the-art results on recent datasets. Thus, our focus for
the rest of the paper will be to accelerate 3D convolution.

In 3D convolution, filters (made up of weights) are moved
spatially as well as temporally, performing dot products at
each spatial-temporal position in the input. Consider a video
input of spatial resolution H ×W , F frames (temporal) and
C channels. Then, if K filters of spatial size R× S, temporal
size T and C channels are 3D-convolved with the input, it
produces an output of spatial size (H −R+1)× (W −S+1)
with K channels and (F − T + 1) frames. Note that R ≤W ,
S ≤ H and T ≤ F . This is graphically depicted in Figure 2
and in Algorithm 1.

Remark. 2D convolution on images is a special case of
3D convolution with F = 1 and T = 1. That is, hardware
supporting 3D convolutions can also support 2D convolution.

Algorithm 1 3D convolution operation.
1: procedure CONV3D(in I,F; out O;H,W,F,C,R, S, T)
2: for k ← 0 to K do
3: for f ← 0 to F − T + 1 do
4: for w ← 0 to W − S + 1 do
5: for h← 0 to H −R+ 1 do
6: out = 0
7: for (r, s, c, t)← (0,0,0,0) to (R,S,C, T) do
8: out += I[f+t][c][w+s][h+r] * F[t][c][s][r]
9: O[f][k][w][h] ← out

10: return O

C. Compute Requirements in 3D Convolution

In image recognition applications based on 2D CNNs,
the 2D convolution kernel dominates the computation [33].
Analysis of the compute requirements of state-of-the-art 3D
CNNs [16], [17], [24] shows us that 3D convolution is even
more compute bound, relative to 2D convolution. For example,
during inference in C3D [16], 3D convolution makes up over
99.8% of compute (the remaining 0.2% being video pre-
processing, fully connected layers, Relu activations and pooling
layers). Hence, it is important to accelerate and optimize 3D
convolutions for efficient video understanding.

Remark. While a 3D CNN’s model size grows on the order
of T over a similarly provisioned 2D CNN, the compute
requirements increase on the order of F ∗ T . This means on-
chip energy will play a larger role in total energy, relative to
DRAM energy, compared to 2D CNNs. This effect is observed
in Figure 1b.

D. Tiling

Accelerators access data through a hierarchy of memories
ranging from expensive off-chip memory to relatively cheaper
on-chip buffers. As observed from Figure 1a, inputs and filters
in a 3D CNN will likely not fit in the accelerator’s on-chip
buffers. In such cases, the only (efficient) way to perform 3D
convolution is to tile the data such that each tile fits on chip.

To improve tiling effectiveness, on-chip buffers can further
be organized in a hierarchy, down to registers close to the
compute. In general, it is possible to have as many levels of
tiling as the number of memory hierarchies used. Figure 3
shows tiled 3D convolution with two levels of tiling. We use
Xt to represent the first level tile of a parameter X , Xtt to
denote the second level tile (a sub-tile of Xt), etc.

When the input does not fit on chip, it is broken into tiles
of size HtWtCtFt that do fit, as shown in Figure 3. When
not all of K filters fit in on-chip memory, they are broken
into tiles of Kt filters, where each of the Kt filters have size
RSCtT . Filters in the filter tile are then convolved over the
input tile to complete computation for that tile. Input and filter
tiles can further form sub-tiles in lower level on-chip buffers,
such as HttWttCttFtt and Ktt. Note that we tile only in K,
F , W , H and C dimensions. The remaining variables—R, S
and T—are generally small values that range between 1 and

Ktt

K

Kt

S

R

W

Ht

Wt

Wtt

Htt

F Ft Ftt

H

Halos

R-1

T

Figure 3. Tiled 3D Convolution. Note that similar tiling can be performed
in the C dimension. Halo size is given for he H dimension only, for a stride
of 1.

11 [16], [17], hence not considered for tiling. The minimum
tile size of inputs and filters is RSCtT .

Since convolution involves a sliding window, adjacent input
tiles overlap if the convolution stride is less than the tile
dimensions. This is referred to as the data halo [12], and
is depicted in Figure 3. Note that in 2D convolution, there are
halos in the WH dimensions. In 3D convolution, there are
halos in the WHF dimensions.

E. Loop Order

From Algorithm 1, we see that the result of 3D convolution
remains the same irrespective of the loop order, as the dot
product operation is commutative. Yet, different loop orders
entail different on-chip memory requirements, data movement
patterns, compute and memory resource utilizations, and halo
overheads. Interchanging loops has been widely studied as
a means to improve performance [34] and has a significant
impact on 3D convolution efficiency because loop variable
bounds vary significantly in modern 3D CNNs.

In section II-D, we saw there could be as many levels of
tiling as the number of memory hierarchies. Similarly, for each
level of tiling, we have a separate loop order which determines
the order of dimensions in which the tiles are fetched. We
represent loop orders as lists [XY Z], where X , Y and Z
are dimensions, and X/Z represent the outermost/innermost
dimensions of the loop, respectively. X and Z are also known as
the minor and major traversal order, respectively. For example,
the HttWttCttFtt tile shown in Figure 3 can be accessed in
the order of any combination of spatial (H , W), channel (C)
or temporal (F) dimensions inside the HtWtCtFt tile. The
loop order [WHCKF] moves through the F spatial dimension
first, C second, etc.

Data transfers. The loop order specifies when and how data
transfers occur into and out of the current buffer level. Consider
any loop order containing dimensions W , H , C, F and K. Data
transfers into the current level buffer occur at the following
points:

• Filters. The next tile of filters is loaded in the innermost
loop labeled C or K.

• Inputs. The next tile of inputs is loaded in the innermost
loop labeled W , H , C or F .

• Partial sums. The next tile of partial sums is loaded in
the innermost loop labeled W , H , K or F .

For example, given the loop order [WHCKF], filter tiles
are loaded in the second-to-innermost loop (K), inputs in the
innermost loop (F), and partial sums in the innermost loop
(F).

Data reuse is directly proportional to loop order. In the
above example, filters are reused spatially in the F dimension.
Due to input tile halo (Section II-D), consecutive input tiles
overlap. In this case, we take advantage of slide reuse and do
not re-fetch the overlapped region in the major dimension. For
example, the above loop order does not re-fetch overlapped
data in the F dimension as it slides in the F dimension, but
does re-fetch overlapped data in other dimensions (W and H)
when it reaches the end of the F dimension.

F. Parallelizing Convolution

For a given loop order, a hardware accelerator may choose to
execute loop iterations in sequence or in parallel. Parallelizing
iterations entails spatially scheduling different iterations across
processing elements (PEs). For example, parallelizing in the K
dimension in Algorithm 1 conceptually converts the for loop
in line 2 to a parallel-for loop.

Which dimension offers the largest opportunity for par-
allelism varies across layers as the size of each dimension
varies over the layers. For example: it is easy to parallelize
across inputs in early layers, but not in later layers as the
input dimensions get smaller in later layers. A fixed choice
of dimension for parallelism, therefore, can hurt accelerator
efficiency as observed by [35]. Parallelism is well studied by
prior works in 2D convolution [35], and 3D convolution allows
parallelization in the time dimension (Fp) in addition to the
spatial (Hp, Wp) and filter (Kp) dimensions.

We note that loop order and PE parallelism, together, give
the accelerator’s dataflow [8], [12].

III. MOTIVATION

In this section, we provide details on the benefits of
configuration-time flexibility, in particular the impact of chang-
ing loop order, tile size and degree of PE parallelism per-
layer in 3D CNN inference. All experiments are shown for
a representative 3D CNN, called C3D [16], and assume an
accelerator with three levels of on-chip buffer which can be
flexibly partitioned between inputs, filters and partial sums—
similar to our final evaluated design in Section VI. Thus,
changing tile size does not cause memory fragmentation. On-
chip buffer sizes are a 1 MB L2 (last level), 64 KB L1, and
16 KB L0, all of which are double buffered, which represent
typical parameters for an edge accelerator. Buffer hierarchies
are considered inclusive for the rest of the paper.

For simplicity, we break the loop order into two components
for the rest of the paper:

(a) Effect of outer loop order.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Ra
tio

 o
f t

he
 L

2
Bu

ffe
r

C3D Layers

Inputs Outputs Weights

(b) L2 buffer allocation across layers for the Opt
configuration in Figure 4a.

(c) Effect of inner loop order.

Figure 4. Access energy for different layers of C3D [16] for various loop orders and tile sizes. Figures denote outer loop orders with upper case letters and
inner loop orders with lower case letters.

1) Outer loop order refers to the order in which the input
tile HtWtCtFt and filter tile KtRSCtT is fetched from
off-chip memory to the last level of on-chip buffer (L2
in this case). The possible loop order variables include
spatial (H , W), channel (C), temporal (F) and filter
(K).

2) Inner loop order refers to the order in which the input
tile Ht..tWt..tCt..tFt..t and filter tile Kt..tRSCt..tT is
accessed from a higher on-chip buffer to the lower level
on-chip buffers or the compute elements. The possible
loop order variables include spatial (h, w), temporal
(f), channel (c) and filter (k), denoted lower case to
distinguish from the outer loop order. We use the same
inner loop order for scheduling tiles between L2-L1 and
L1-L0 buffers.

Remark. We assume 8-bit inputs and weights for our
experiments as this a standard across several works [36],
[37] for 2D CNN inference. To the best of our knowledge,
3D CNNs for video understanding have not been studied for
precision, but we will assume that similar results for 2D would
hold for 3D.

A. DRAM Access Energy

First, we analyze DRAM energy consumption across layers
as a function of outer loop order. Note that the DRAM access
pattern is fully determined by outer loop order and tile sizes
in the L2 memory.

We compare four configurations in Figure 4a: [KWHCF],
[WFHCK] and [WHCKF] and a best-case scenario “Opt”
explained below. As discussed in Section I, the frequency
that weights are iterated through, which is determined by the
position of K in the outer loop order, is a first-order constraint.
Thus, we show outer loop orders [KWHCF] and [WFHCK]
to illustrate extreme points, where the L2 buffer is weight or
input stationary [8], respectively. We show outer loop order
[WHCKF] as it achieves the best energy overall, averaged
across all layers. Finally, whereas the above three configurations
use the same outer loop order across all layers, Opt picks
whichever outer loop order is optimal for each layer. For each
bar in the figure, we sweep tile sizes and inner loop orders,

and plot the configuration with lowest overall (off-chip plus
on-chip) energy to isolate the effect of outer loop order.1

There are several important observations. First, the energy
cost for the K-extreme loop orders follows the observations in
Section I and Figure 1a, where input/weight working set varies
dramatically across layers. Specifically, outer loop orders with
K in the inner loop do better in early layers, but perform worse
in the later layers. This is because the filters progressively get
larger in later layers, making it prudent to iterate through the
filters fewer times in those layers. The trend is reversed for
inputs and the spatial dimensions W,H , which get progressively
smaller in later layers. Second, the best loop order overall,
[WHCKF], does not provide the lowest energy for each
layer individually, and all configurations incur large overheads
relative to Opt. This indicates that 3D CNN accelerators should
flexibly support different outer loop orders at layer granularity.
As such, we design Morph with sufficient flexibility to achieve
Opt.

Remark. In Figure 4a, layers 1, 2, 5, 7 and 8 have the
same DRAM energy regardless of outer loop order. This is
because in those layers, one data type fits entirely in the L2
(see Figure 1a), meaning that the same tile appears multiple
times in a row. We assume the accelerator does not re-fetch
redundant data in these cases.

Figure 4b gives more insight on how the (flexible) L2 buffer
is partitioned between inputs, weights and outputs for the Opt
case in Figure 4a. Inputs occupy a larger buffer percentage
in early layers, whereas filters occupy more space in later
layers. The best energy-performance can be obtained when
one of the data types can be fully accommodated in the L2, as
observed for Layer 3 in Figure 4b, which fully fits the filters by
allocating less space to inputs. Similarly for layers 5, 7 and 8,
fitting the outputs entirely is beneficial as they can be carried
over as inputs to the next layer. Overall, it is clear that buffer
allocation flexibility is important for accelerator efficiency.

1Note that since this architecture flexibly shares buffering between data
types, the sum of all L2 tile sizes is bounded by 512 KB.

B. On-chip Memory Access Energy

Beyond DRAM accesses, tile size and inner loop order for
the on-chip buffers also have a significant impact on the overall
inference energy. Figure 4c repeats a similar methodology as
in Section III-A, varying inner loop order instead of outer loop
order. As done in Section III-A, we choose three inner loop
orders—[kfwhc], [whkfc] and [cfwhk] (average best), and
sweep other parameters such as tile size to yield the lowest
energy point for each inner loop order.

The takeaway is that observations similar to those made in
Section III-A are also valid for tiling decisions made between
on-chip memories. We see that the best performing inner
loop order varies from layer to layer and the average best
inner loop order is not the best solution in each layer. As
before, Opt, which selects the optimal inner loop order per
layer, is significantly better than other strategies. Hence, 3D
CNN accelerators need to support flexible inner loop orders to
minimize the energy spent in on-chip buffers.

We do not show experiments for on-chip buffer tile size, but
note they are analogous to the experiment in Section III-A.

C. Performance via PE Utilization

Beyond energy, accelerator performance is maximized when
all PEs are doing work. Several earlier works in 2D CNN
acceleration have noted that static dataflows with good PE
utilization in early layers leads to poor PE utilization in later
layers, and vice versa [12]. Follow-on/concurrent work has
shown how distributing tiles in either the filter or spatial
dimensions, depending on the layer, can get around this problem
and enable high PE utilization for all layers [35], [38].

We observe that the root cause of PE under-utilization in 2D
CNN accelerators—that weight volume grows towards later
layers and input volume shrinks—also holds for 3D CNNs, as
Figure 1a and previous analysis in this section have shown.
Thus, a 3D CNN accelerator which can flexibly parallelize
tiles in different dimensions, as discussed in Section II-F, can
likewise avoid PE utilization issues.

D. Take-away

This section has shown how an accelerator that performs
best “on average, across layers” is sub-optimal relative to an
accelerator that can adapt to the needs of each layer. It is clear
that there is no one optimal inflexible hardware configuration
to efficiently run every layer of a 3D CNN, let alone across
different 3D CNNs.

Accordingly, the rest of the paper develops a hardware
architecture that can be configured to evaluate different loop
orders, tile sizes and degrees of PE parallelism for each layer
of inference. We further develop a software infrastructure that
pre-analyzes each layer so as to determine the optimal hardware
configuration for each layer. Together, these components enable
highly efficient inference across a range of 3D CNNs with
varying storage and compute requirements.

Figure 5. Sweep study for relative energy advantage for multi-level buffer
hierarchies over a single level buffer hierarchy, for 3D and 2D convolution.
The graph assumes an input of size 112× 112× 3 (HWC) with 16 frames
(F) convolved with a filter of size 3× 3× 3 (RSC) with a temporal depth
of 3 (T). Note that 2D convolution sets F and T to 1.

IV. HARDWARE ARCHITECTURE

In this section, we first describe design principles for
an inflexible Morph base architecture. Then we show how
modifications to the base architecture enable flexible tiling,
loop ordering and PE parallelism.

A. Base Architecture

3D CNNs are computationally similar to 2D CNNs, but
with additional data reuse opportunities in the time dimension.
Filters in 2D CNNs slide in the spatial plane, along the H
and W dimensions. As a result, each input is reused in R× S
dot products per filter, ignoring edge effects and assuming
stride 1.2 To exploit this reuse, 2D CNN accelerators (e.g.,
[8]) architect custom logic to re-read inputs in buffers close to
the processing elements, without re-loading those inputs from
higher level buffers.

3D CNNs generalize convolution to spatial-temporal dimen-
sions, sliding in W , H and F dimensions. This increases input
reuse to a factor of R×S×T . Running a 3D CNN on a stock
2D CNN accelerator results in sub-optimal efficiency due to the
lack of support for temporal reuse. A 2D CNN accelerator must
perform 2D convolution on each of T frames separately and
then merge the resultant partially computed frame to generate
a final output frame. This process repeats F − T + 1 times to
produce the complete output. This introduces large overhead in
the form of on/off-chip buffer transfers per frame. To mitigate
this overhead, we design our accelerator to exploit the spatial-
temporal reuse in on-chip buffers, e.g., close to the PEs, in an
analogous fashion as 2D CNNs exploit spatial reuse.

1) Buffer hierarchy: A key pre-requisite to exploit data reuse
is to design a deep enough on-chip buffer hierarchy to support
all degrees of temporal locality in the data access pattern.
Thus, to start, we perform an analytic design space search to

22D and 3D CNNs also offer input reuse in the filter K dimension, as each
of the K filters works over the same spatial or spatial-temporal input. Since
this factor is the same in both 2D and 3D CNNs, we focus the discussion on
slide reuse (in the WH or WHF dimensions), not filter reuse (K).

L2 buffers

D
R

A
M

L1 buffers PE

L2 control

L1 control PE

Inputs

Weights

Psums Inputs

Weights

Psums

Cluster

N PEs
per

cluster

M clusters
per chip

in
p

ut
s

w
ei

gh
ts

p
su

m
s

Processing Element (PE)

Morph Accelerator

Datapath
control

Buffer
control

L0
buffers

Figure 6. Top level view of the Morph base architecture. The final Morph
architecture (Section IV-B) adds logic to make buffers and control logic
configurable to different loop orders, tile sizes and degrees of PE parallelism.

determine a sufficient number of levels of buffer hierarchy in
Figure 5. In this experiment, for each buffer hierarchy (one
level, two levels, etc.) we sweep possible loop orders and tile
sizes, fixing the physical buffer size to the tile size, to isolate
the effect of levels of hierarchy. As in Section III, we show
whichever configuration yields lowest energy consumption. The
figure shows results for a representative layer.

Both 2D and 3D CNNs benefit from at least three levels of on-
chip buffer hierarchy and, accordingly, our designs have a three-
level memory hierarchy throughout the paper. Interestingly, the
effect of additional memory hierarchy in 3D CNNs is more
pronounced: a three-level hierarchy yields a 7.8× improvement
over a one-level hierarchy, relative to a 3.8× improvement for
2D CNNs. The reason is due to additional halo effects present
in 3D CNNs (Section II-D). To prevent halo overhead, 3D
CNNs prefer larger tiles/buffer sizes. But, larger tiles lead to
higher energy cost per access. Adding another level of memory
hierarchy brings down the access energy cost, distributing the
data locality across the hierarchy.

We note that energy efficiency drops beyond three levels of
buffer. The reason is that reuse has already been sufficiently
captured in three levels, and adding additional levels simply
adds buffer reads/writes to buffer levels that cannot provide
additional data reuse.

2) Architecture: With the three-level buffer hierarchy in
mind, Figure 6 shows the top level view of the Morph base
architecture. Morph base is built with M compute clusters
where each cluster consists of N processing elements (PEs).
The accelerator consists of L2, L1 and L0 on-chip buffers,
each statically partitioned to store inputs, filters and partial
sums (psums).3 Each partition’s size is pre-determined based
on what is needed to support the worst-case tile size across
target 3D CNNs (see 3D CNNs in Section VI-C). L0 buffers
reside in the PEs; L1s in each cluster; and the L2 is the

3As with 2D CNNs, psums are wider in bitwidth than input activations and
weights.

last-level buffer before DRAM. Each buffer has static control
logic, e.g., hard-coded FSMs, that governs where/when data is
read/written, how many MACCs to perform, etc. Inputs, filters
and psums are transferred over three broadcast networks that
connect the L2 to the L1s/clusters. Each cluster has a separate
(local) set of three broadcast networks which connect its L1 to
local L0s/PEs. Data is consumed by ALUs in each PE. Each
ALU supports Vw lanes of vector multiply and add/accumulate
(MACC) operations. Vector lanes are provisioned across output
channels (in the K dimension). Each PE has Vw accumulator
registers, one per lane, to reduce psum traffic between the L0
and ALU. Finally, to remove dead time between processing
tiles, all buffers are logically double buffered.

3) Dataflow: The Morph base architecture implements a
fixed loop order and tile size which we found to give the best
average performance/watt across a range of 3D CNNs. This
methodology is analogous to that used for inflexible accelerators
running 2D CNN inference (e.g., [8], [12]), and we elaborate
on this process further in Section V.

1) Outer loop order: Morph base implements an outer
loop order of [WHCKF]. This implies that the input
tile is fetched to the L2 from DRAM in the F dimension
first, and repeats this traversal for all filters (K) before
completing the other spatial dimensions.

2) Inner loop order: All levels of on-chip buffer in Morph
base use an inner loop order of [cfwhk]. The PEs go
through all the filters in Kt..t before sliding in spatial
and temporal dimensions; maximizing the input reuse.
Finally, the process repeats for the next Ct..t channels,
reusing psums from the last iteration.

Finally, Morph base parallelizes work across PEs using a
fixed Hp and Kp.

4) On-chip networks: All networks on chip (NoCs) in the
Morph base architecture are simple broadcast networks, which
can implement unicast-, multicast- and broadcast-style data
transfers using a mask to indicate destination(s).

We argue that the large degree of data reuse present in 3D
CNNs allows architects to build such simple NoCs without
starving the compute units. Consider the system shown in
Figure 6 with M ×N PEs using 1 Byte input activations and
weights. If each PE were to consume and finish using one
unique input per cycle, the bus between L2 and L1 would
need to transfer M ×N bytes of input per cycle. Because each
input is reused R× S × T times (stride 1), however, the bus
between the L2 and L1s need only carry M×N

R×S×T inputs per
cycle to rate match the PEs in the steady state. Note that this
argument implies that rate matching is strictly easier for 3D
CNN accelerators relative to 2D CNNs, as 3D CNNs have an
additional factor T reuse for inputs.

A similar argument allows us to reduce bus bandwidth
between each L1 and its N PEs. Required bus bandwidth
for weights and psums is even less significant, as each weight
and psum is reused (W −R+1)× (H−S+1)× (F −T +1)
and C ×R× S × T times, respectively, which is larger than
the factor R× S × T reuse in each input.

Read
FSM

B banks

Write
FSM Addr +

bank sel

B x 3 data mux

4 x B data demux

Inputs, weights, psums
 (from higher level/network)

Bank assign

Psum (from
lower level)

Inputs, weights, psums (to lower level/network)

2B

psum update?

Figure 7. Configurable buffer with B banks. Shaded blocks are programmable.
The bank assign logic outputs a 2B-bit wide vector that indicates, for each
bank, whether that bank is assigned to inputs, filters or psums.

Given the concrete dataflow from Section IV-A3, we can
set broadcast bus bandwidth based on expected 3D CNN
parameters and desired compute throughput. For example, given
filters with R = S = T = 3 and stride 1 (which is typical)
and a desired compute throughput of N ∗M = 36 ∗ 6 = 216
MACCs/cycle (N = 36 PEs for each of M = 6 clusters) in
the steady state, we only require a 64 bit bus between the L2
and L1s and a 32 bit bus between each L1 and its L0s to rate
match the PEs.

B. Morph: A Flexible Architecture

We now propose changes to the Morph base architecture
so that it can better match the needs of different 3D CNN
layers. In general, there are four aspects to imparting flexibility
to rigid CNN accelerators, namely configurable buffers, PE
control logic, NoCs [38] and datapaths [35], [39]. We will
add support for flexible buffer partitions to enable different
tile sizes per 3D CNN data type without introducing buffer
fragmentation. We will add flexible control logic to enable
different outer and inner loop orders. Finally, we make minor
modifications to the Morph base NoC and PE datapath to
enable different degrees of PE parallelism.

Additional flexibility adds area, energy and frequency
overhead. We note that previous works have shown that the
area and power consumed by the on-chip buffers in CNN
accelerators dominates the control logic, ALUs and datapath.
Hence, despite the logic added to support flexibility, the overall
area and power overhead is not significant (see Section VI).

1) Configurable Buffers: The goal of providing buffer con-
figurability is to allow different tile sizes of inputs, filters and
psums at each level of the buffer hierarchy, while minimizing
internal fragmentation in each physical buffer. Figure 7 shows
the configurable buffer design we use in Morph. This design is
reused for each level of on-chip memory, and is used to share
space between inputs, filters and psums within a level.

Each buffer is first divided into Bi banks (for buffers in
the Li-th level memory). Each bank supports a single read
and single write port. For configuration purposes, Bi for i =

0, 1, 2 is exposed to software, which allocates memory at bank
granularity across inputs, filters and psums (Section V). Banks
are allocated to each data type contiguously, and base registers
(“Bank assign” in Figure 7) configured at layer start time
denote the range of banks used to store each data type. Parallel
mux/demux logic is used to index into and read/write data
into/out of each group of banks. The output (read) mux is
replicated for each of the three types of outputs (inputs, filters,
psums) and since each data type reads one word per access,
there are no bank conflicts.

Programmable FSMs (Section IV-B2) are used to generate
address patterns into each group of banks. High-order address
bits, along with the bank assignment registers, determine which
bank is responsible for each type of read. The full address is
sent to each bank to derive a local bank address as well as
bank select signals. Thus, reading each data type activates only
one bank to save energy.

This design is simple, however may lead to some internal
fragmentation depending on how well tile sizes cleanly divide
into banks. Further, banking in general runs the risk of increased
area due to the use of less dense SRAM arrays. In our
evaluation, L2, L1 and L0 memories are decomposed into
16 banks, which was sufficient to support variable tile sizes
efficiently. In this regime, we found area overheads due to
banking to be minimal. For example, breaking a 1 MB L2 into
16 banks only added a 4.9% area overhead [40].

Buffer data width. Note that psums are wider than input
activations and weights. Specifically, given P -bit precision per
activation/weight, a psum requires 2∗P +log2(RSTC) bits to
avoid overflow, due to the number of MACCs per dot product
(Section II-B). We handle this disparity in different ways for
different buffering levels. At the L1 and L2, we use wider
word widths (i.e., > P), sufficient to read out one psum or
more than one activation/weight per access. This design has
an added benefit that energy/bit/read decreases with wider
SRAM word widths. At the L0, we set the buffer word width
to P bits. While this is appropriate for activations/weights,
psums require multiple cycles to access. However, this design
doesn’t seriously degrade performance as psum reads/writes
out of the L0 are infrequent relative to MACCs into the local
accumulator register.

Access priority. As done with Morph base, the buffer is
logically double-buffered to avoid dead time between tiles.
All data types are written from higher level buffers over the
broadcast network, and psums may be written back from lower
levels. When writes from a higher level and a psum update
from a lower level happen in the same cycle, priority is given to
the higher level and standard pipeline backpressure is used to
stall the psum update. We note that psum updates are relatively
infrequent, because the accumulator register below the ALU
filters psum writebacks to higher levels.

2) Control Logic: The Morph base architecture uses fixed
function control FSMs that implement logic for a specific loop
order at each level of the memory hierarchy (Section IV-A3).
These FSMs generate addresses into the data buffers, count

Loop transition?

lo

op
 d

im
en

si
o

n
s

W
r.

 e
n

ab
le

In
cr

e
m

en
t

co
u

nt
e

r
/r

es
et

Loop bounds Loop counts

Next
addressEv

e
nt

m

as
k

Event
triggers

Loop steps

Figure 8. Programmable read/write FSM responsible for generating addresses
into buffers and other control signals such as tile done, etc. Shaded registers
are configurable at layer start time.

how many MACCs to perform, when to read/write psums
relative to performing MACCs, when processing all tiles is
complete, etc. Such control signals change significantly for
different tile sizes and loop orders. For example, when the
loop order changes, loop bounds and memory access pattern
into each tile changes, along with the frequency of events such
as loading and unloading tiles between memory levels.

To enable control flexibility for the final architecture, we
use the configurable FSM shown in Figure 8. The FSM is
programmed by setting two sets of configurable registers which
denote loop bounds and loop steps, for a parameterizable
number of loops which is determined at design time. The FSM
walks through the loop using the loop bounds and accumulates
a step into an output register. That is, for a D-level loop, the
user specifies bounds b0, . . . , bD−1 and steps s0, . . . , sD−1.
Each FSM ‘state’ corresponds to an iteration of this D-level
loop, given by iteration indices i0, . . . , iD−1 where ij < bj
for j = [0, D − 1]. That is, iteration indices behave like their
software counterparts. When entering each state, the FSM
outputs the current value in the output register and one of
the steps sj is added to that register for the next iteration
(similar to [41], [42]). Here, j equals which loop is currently
terminating (i.e., if all ik = bk − 1 for k = 0, . . . , j ≤ D − 1)
or 0 if no loop is terminating.

By setting loop bounds and loop steps appropriately, the
accumulator gives the different address sequences needed by
the buffers for different loop orders. We also add logic to the
FSMs, called triggers, to derive non-address control signals. We
observe that these events—e.g., end of tile, unloading/reloading
a psum from the ALU accumulator register—occur at loop
iteration boundaries. Thus, simple two-level logic with a
programmable mask (“Event mask” in the figure) can derive
these signals from loop count reset signals already generated
in the FSM.

3) Controlling PE Parallelism: Finally, to support flexible
degrees of PE parallelism we architect a mask register to control
unicast, multicast and broadcast on the bus-based NoCs. Within
a layer, the degree of PE parallelism is fixed. The exception
is in the last round of tiles, which may occupy less PEs due
to edge effects. We handle this effect with a counter to track
when the last round begins, and a second mask register which

reconfigures the NoC for that round.

V. SOFTWARE OPTIMIZATIONS

In this section, we describe a software optimization frame-
work that pre-analyzes 3D CNNs and finds the optimal tiling
and loop order parameters per layer, using knowledge of the
underlying Morph architecture. Popular software libraries such
as TensorFlow [43], Caffe [44] and Theano [45] provide a
high-level programming interface to users while masking the
low-level optimizations specific to hardware. The software
optimizer covered here would fit in as a library that gets called
when 3D convolution is requested by the user and the chosen
device is Morph. We note that these optimizations need only be
performed once per CNN. After best-fit parameters are found
once, a configuration file can be saved and recalled instead of
re-running the analysis.

The flow takes two inputs: (1) layer parameters which
include sizes of input activations, weights and other parameters
like stride (e.g., W , H , etc.); and (2) architecture details of
Morph which include the number of PEs (N) and clusters
(M), and the size of each L0, L1 and L2 memory with their
banked configuration (Bi for each i). The optimizer returns
several “best” configurations (e.g., best performance, best
performance/watt, etc.) which the user can select between.
Each configuration specifies tile sizes, loop orders and spatial
PE parallelism.

A. Generating Configurations

Based on (1) layer parameters and (2) architectural details,
the optimizer first enumerates all possible configurations. First
a parameter list is generated that includes:

• All possible inner and outer loop orders.
• All possible last-level buffer (L2) tile sizes: Ht, Wt, Ct,

Kt and Ft.
• Parallelization parameters, such as Hp, Wp and Kp.

Chosen L2 tile sizes serve as a starting point for later
heuristics that select sub-tile sizes for remaining buffer levels.
To reduce search time, the L2 tile size and degree of PE
parallelism search space can be discretized.

The optimizer takes the cartesian product of the parameter
list to enumerate the configurations, where each configuration
is [outer loop order, inner loop order, Ht, Wt, Ct, Kt, Ft, Hp,
Wp, Kp]. Once generated, the following steps process each
configuration:

B. Generating Metadata

Based on the current configuration, this step generates
metadata required for further calculations. This includes: the
number of iterations the chosen tile has to perform to complete
the convolution, storage requirements for each of the tiles,
overlapped regions for tile slides (halos [12]), the final output
size, etc.

C. Memory Allocation

In this step, the optimizer uses a heuristic to set the tile
size for each data type (inputs, weights, psums) for each level
of on-chip memory below the last level, given each starting
configuration defined in Section V-A.

Consider an N level on-chip memory hierarchy where each
level buffer has size Ln. Let Tn represent a list giving the tile
size for each data type (input, weights, psums). The allocate
heuristic finds a Tn for the nth level buffer such that:

• Tmin ≤ Tn ≤ Tn+1 where Tmin represents the minimum
tile size (for each data type) required to perform a 3D
convolution. That is, sub-tiles are smaller than tiles, sub-
sub-tiles smaller than sub-tiles, etc.

• freuse(Tn, inner loop order, buffer size, Bn) is maximized,
where freuse is a function that returns the amount of reuse
for each tile, for a given inner loop order and buffer (size
and num banks).

•
∑

Tn ≤ Ln, i.e., the sum of the tile sizes does not exceed
the physical buffer size.

Given tile candidates and configuration information, freuse
calculates the ratio of buffer fills (from a higher level buffer)
to reads and updates (from lower levels). For input tiles, reuse
comes from sliding (which reduces halo cost) and output
channels (as the same input is used for each output channel).
For filter tiles, reuse comes spatially as the same filter is used
for different spatial positions in the input.

allocate is called level by level, starting from level N−1 and
going down to 0 (as level N is specified in the configuration),
until all tile sizes are specified. For each level, allocate searches
a small percentage of the overall tile size space as follows. For a
D-dimensional tile, allocate generates 2D tile sizes where each
tile size corresponds to setting each dimension in the tile to have
minimum or maximum size. For example, a two-dimensional
tile with dimensions XY has four sizes, corresponding to
setting each dimension to max or min: (max, max), (max,
min), (min, max), (min, min). Consider a tile in level n + 1
which has dimension Xt, meaning it has dimension Xtt in level
n. Then the max size for dimension X occurs when Xt = Xtt.
The minimum size follows the rules in Section II-D. Once
three sets of tile sizes are generated for the three data types,
we take the cartesian product to generate candidates for Tn,
and each of these are tested using freuse.

D. Performance and Power Calculation

Once memory allocation is complete, there is enough
information to compute the number of operations performed
in each PE, the number of PEs active at a given time (PE
utilization) and the number of reads/writes that occur in each
buffer. We use a linear energy model to convert the number of
reads/writes/operations to the expected energy consumed for
the layer. We use an analytic model to convert PE utilization
and other configuration metadata (such as the number of
tiles computed per PE, the number of reads per tile, etc.)
to accelerator wall clock time.

E. Final Configuration Generation

The optimizer performs the above steps for each config-
uration and produces corresponding power and performance
results. Once all results are available, it is straightforward to
optimize for power or performance or performance/power, etc.

The final configuration can then be used to derive all state
needed to configure Morph from Section IV-B, e.g., bank
assignments and FSM state.

VI. EVALUATION

A. Measurement Setup

We evaluate Morph using a whole-chip performance and
energy model, and design/synthesize the Morph PEs with RTL
written in Verilog. All designs are evaluated in a 32 nm process
with a 1 GHz clock. For the energy model, energy numbers for
arithmetic units are taken from [46], scaled to 32 nm. SRAM
energies are taken from CACTI [40]. For all SRAMs, we
assume itrs-lop as this decreases energy per access, but
still yields SRAMs that meet timing at 1 GHz. DRAM energy
is counted at 20 pJ/bit [46]. Network on chip (NoC) energy
is extrapolated based on the number and estimated length of
wires in the design (using our PE area and L2 SRAM area
estimates from CACTI). We assume the NoC uses low-swing
wires [47], which are low power, however consume energy each
cycle (regardless of whether data is transferred) via differential
signaling.

B. Points of Comparison

We evaluate the design against three variants:
1) Morph: Includes mechanisms endowing hardware flexi-

bility (Section IV-B) and uses the Morph software anal-
ysis to determine best loop order and buffer partitions.

2) Morph base: A baseline system that runs an average
best loop order generated by the Morph optimizer
(Section V), specifically, outer loop order [WHCKF]
and inner loop order [cfwhk]. Table I shows the static
partitioning for the on-chip buffers. We choose the
partition sizes that give the average best energy efficiency
across all DNNs under test.

Table I
ON-CHIP BUFFER PARTITIONS.

Hierarchy Inputs Outputs Weights
L2 38.5% 40% 21.5%
L1 40% 10% 50%
L0 40% 10% 50%

3) Eyeriss: To compare against a well-optimized 2D CNN
accelerator, we simulate Eyeriss [8] using the nnflow
simulator [48]. We take 100% density for both input
and filters and normalize all the parameters in Eyeriss
with Morph in terms of maximum compute power and
available on-chip memory as shown in Table II. Eyeriss
evaluates a 3D CNN “frame by frame” as described in
Section IV.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Eye
ris

s

Morph_base

Morph

Eye
ris

s

Morph_base

Morph

Eye
ris

s

Morph_base

Morph

Eye
ris

s

Morph_base

Morph

Eye
ris

s

Morph_base

Morph

N
or

m
al

iz
ed

 E
ne

rg
y

(L
ow

er
 is

 b
et

te
r)

DRAM L2 L1 L0 Compute

C3D I3DResNet-3D Two_StreamAlexNet

1x

-1.78x

+1.89x

-4.49x

-1.41x

1x

-5.8x -7.6x

-26.2x

1x 1x1x

-28.3x-15.8x -31.8x

Figure 9. Energy consumption for various state-of-the-art 2D and 3D CNNs when run on Eyeriss, Morph and Morph base. Values are normalized to Eyeriss.

We use 32 nm-based energy numbers for both buffer access
and compute across all configurations for a fair comparison.
Morph and Morph base use three levels of on-chip buffer as
described in Section IV, and the L2, L1 and L0 are sub-divided
into 16 banks each.

Table II
SIMULATION PARAMETERS.

Parameters Morph Eyeriss
PEs 16 (per cluster) 24× 32

Clusters 6 −
Vector Width 8 1

L2 Size 1024 kB 1408 kB
L1 Size 64 kB (per cluster) −
L0 Size 16 kB (per PE) 2 kB (per PE)

C. CNNs Evaluated

We evaluate the proposed methods on the following net-
works:

1) C3D [16]: Owing to its popularity and wide adoption in
action recognition.

2) I3D [17]: As it currently holds the state-of-the art results
on the Kinetics [20] video dataset.

3) 3D ResNet-50 [24]: A 3D version of the popular ResNet-
50 [3].

4) 2-Stream [14]: A 2D network that runs on multiple input
frames.

5) AlexNet [1]: One of the earliest and most popular 2D-
CNNs for image recognition.

D. Energy Analysis

Figure 9 shows the energy consumption of I3D, C3D, 3D
ResNet-50, 2-Stream and AlexNet for Morph compared to the
Morph base and Eyeriss. A 3D architecture adaptive to the
varying memory requirements in 3D CNNs can exploit more
data reuse for different layers compared to an accelerator with
a fixed strategy. Effective data reuse at all levels of memory
hierarchy leads to fewer accesses to the higher level buffers
and expensive off-chip memory, thus saving energy. This effect
can be seen in Figure 9, where Morph shows 2.5× on average
improvement in energy over Morph base.

Both Morph base and Morph significantly outperform Ey-
eriss [8] in terms of energy consumption on 3D CNNs. This
is mainly because Eyeriss cannot exploit temporal data reuse
nor can it choose loop orders for different 3D CNN layers. As
the number of frames increase, the efficiency gap widens; as
evident from I3D which uses 64 frames compared to 16 frames
in C3D. This is due to the increased temporal data reuse
opportunity with more frames, which both Morph designs
can exploit. Interestingly, Eyeriss outperforms Morph base
on AlexNet. This is because the Morph base design’sL0
buffer is provisioned for 3D CNNs, where a larger tile helps
extract proportionally more data reuse. However, 2D CNNs like
AlexNet do not benefit from larger tile sizes—the additional
energy cost per byte outweighs the improvements in reuse.

Table III
C3D CONFIGURATION OPTIMIZED FOR ENERGY BY THE MORPH SOFTWARE ANALYSIS.

Layer Outer Loop Order Inner Loop Order Configuration
Kt Ht Ft Kp ∗ Vw

layer1 KWFHC cwhfk 64 114 16 8
layer2 KWHCF cfwhk 128 30 16 8
layer3a KWHCF kcfwh 16 28 8 8
layer3b WFKHC whckf 8 16 6 8
layer4a WFKHC whckf 8 14 4 8
layer4b WHCKF kcfwh 16 14 4 16
layer5a WFKHC whckf 32 7 2 16
layer5b WFKHC whckf 32 7 2 16

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 p
er

f/
w

at
t (

H
ig

he
r i

s b
et

te
r)

Morph_base Morph

C3D I3DResNet-3D Two_StreamAlexNet

1x 1x1x1x1x

4.2x
4.14x

5.08x

2.07x

4.89x

Figure 10. Performance/watt comparison between Morph and Morph base.

Morph, however, slightly outperforms Eyeriss on AlexNet,
owing to the improved tiling parameters and flexible loop
ordering.

To show further insights, each bar in Figure 9 is broken
down into five components: DRAM access energy, L2 global
buffer, L1 cluster buffer, L0 and compute. The results prove
our claim in Section I that the increased compute to memory
ratio in 3D CNNs results in large on-chip energy consumption.
From Figure 9, we see that Morph is effectively able to reduce
the DRAM, L2, L1 and L0 energy components by 1.6×, 3.2×,
2.5× and 4×, respectively, on average relative to Morph base.
This demonstrates the effectiveness of flexibly configuring loop
order at each level of the hierarchy and allowing flexibility in
buffer partitions and tile sizes.

Table III shows the results from the Morph software analysis
for C3D. The table lists the configurations chosen for each
layer of C3D, tuned for minimal energy consumption when
run on the Morph architecture. The first two columns show
the outer and inner loop orders and the rest show the tiling
parameters. This reflects how the loop orders and tile sizes
vary across the layers to improve energy efficiency.

E. Performance-per-watt Analysis

Given that both Morph and Morph base have the same
theoretical maximum GFLOPs, any performance improvement
should come from improved PE utilization. Figure 10 shows
the performance-per-watt characteristics of Morph normalized

to Morph base. Morph delivers 4× on average improvement
over Morph base; this can be attributed to the improved PE
utilization achieved by adaptive loop orders and parallelization.
Morph adaptively chooses spatial parallelization parameters
like Hp and Wp, in and across layers. This helps to keep the
utilization of compute resources high in edge cases such as
when tile size is not an integer multiple of the dimension size.
Kp provides parallelization across filters, which can help keep
the PEs busy, even when the inputs get smaller such as in
later layers. 2D accelerators like [12] suffer from PE utilization
challenges in the later layers due to the diminishing input
size, and Morph’s performance/watt improvement of 5.08×
in AlexNet (2D-CNN) suggests that Morph adapts well to
this problem and chooses adequate parallelization to improve
overall performance.

F. Hardware Implementation

Finally, Table IV shows the area overhead of Morph
mechanisms at the PE. We implemented both Morph and
Morph base PEs in Verilog, using 8 bit precision weights/acti-
vations. Synthesis used a 32 nm commercial process, and both
designs met timing at 1 GHz. Area numbers for SRAM were
obtained from CACTI [40] and the area for logic comes from
synthesizing in a 32 nm process technology.

Table IV
MORPH PE AREA BREAKDOWN (IN mm2).

Component Morph base Morph % change
L0 buffer 0.041132 0.042036 2.19%
Arithmetic 0.00306 0.00366 19.36%
Control Logic 0.00107 0.00182 70.59%
Total 0.04526 0.04751 4.98%

Morph divides L0 into 16 banks, thus adding additional
area overhead compared to statically partitioned monolithic
SRAMs in Morph base. Arithmetic added a few changes to
support flexible loop orders, which increases the area by 19%.
As expected, control logic sees a relative large increase in
area (over 70%), which is due to the increased complexity of
the read/write FSMs and the control logic added for buffer
partitioning. However, the overall area increase is almost
negligible at 5%. This should not come as a surprise, given
the large area occupied by the on-chip memories.

VII. RELATED WORK

CNN accelerators. Due to the recent popularity of 2D CNNs
in image recognition and related tasks, there have been a
plethora of works proposing new architectures to accelerate
2D CNNs [8], [10], [11], [49]. There have been no works that
accelerate 3D CNNs in ASICs, although we note several recent
works [50], [51] which have explored hardware acceleration of
3D CNNs on FPGAs. On one hand, FPGAs are reconfigurable
and thus can directly adapt to different CNN configurations.
On the other hand, FPGAs pay for this reconfigurability
with reduced compute density and clock speeds. The Morph
architecture introduces several points of flexibility which allows
it to adapt well to different CNNs, yet retain the efficiency
benefits of an ASIC. Lastly, a recent trend has been to exploit
sparsity in inputs and weights, to save compute and compress
the model [9], [12], [13], [36], [52]. We do not study sparsity
in 3D CNNs and consider it a future work, but expect that
many of the same ideas from sparse 2D CNN accelerators [9],
[12], [13], [25], [36] to apply.

Adaptive accelerators. There has been a recent interest in
the community towards flexible accelerators for 2D CNNs.
FlexiFlow [35] proposes flexibility in choosing the dimension
of parallelization for better PE utilization, but keeps the loop
orders static. DNA [39] proposes to reconfigure the datapaths
to support different dataflows. MAERI [38] proposes using
a reconfigurable NoC to support different dataflows. All the
above mentioned works, however, only target 2D-CNNs. In
comparison, Morph offers higher degrees of flexibility in terms
of tile sizes, loop orders and parallelism achieved with flexible
buffering and programmable control logic.

Design space search for CNN accelerators. For ASICs
like Morph, only the software component can vary to support
different types of CNNs. Several prior works study how to
search for optimal hardware configurations for FPGA-based
accelerators [53], [54], [55], where the entire design can be
re-parameterized at configuration time. These designs employ
techniques such as loop unrolling and loop interchange, similar
to Morph. As stated above, a disadvantage is their reliance on
FPGAs, which incurs an area and performance hit due to the
FPGA fabric.

VIII. CONCLUSION

This paper proposed Morph, a novel 3D CNN accelerator
designed for video understanding, which can adaptively support
different tile sizes and loop orders. We also proposed the Morph
optimizer, which determines efficient hardware parameter
settings for each layer of each target 3D CNN. Putting it all
together, our accelerator significantly outperforms an inflexible
but similarly provisioned baseline accelerator, as well as the
Eyeriss 2D CNN accelerator, on a set of state-of-the-art 3D
CNNs. We view our work as a first step towards enabling
real-time video understanding on edge devices and advocate
imparting flexibility in CNN accelerators to improve power
and performance efficiency.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS’12.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, et al., “Going deeper with convolutions,”
in CVPR’15.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR’16.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ArXiv’14.

[5] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2,
2010.

[6] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” tech. rep., Citeseer, 2009.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR’09.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ACM
SIGARCH Computer Architecture News, vol. 44, pp. 367–379, IEEE
Press, 2016.

[9] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in ACM SIGARCH Computer Architecture News, vol. 44,
pp. 1–13, IEEE Press, 2016.

[10] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning supercomputer,”
in MICRO’14.

[11] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, pp. 92–
104, ACM, 2015.

[12] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
ISCA’17.

[13] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
“Ucnn: Exploiting computational reuse in deep neural networks via weight
repetition,” in ISCA’18.

[14] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in NIPS’14.

[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,”
in CVPR’14.

[16] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in ICCV’15.

[17] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in CVPR’17.

[18] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” TPAMI’13.

[19] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” ArXiv’12.

[20] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “Activitynet:
A large-scale video benchmark for human activity understanding,” in
CVPR’15.

[21] M. Monfort, B. Zhou, S. A. Bargal, A. Andonian, T. Yan, K. Ramakr-
ishnan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, et al., “Moments
in time dataset: one million videos for event understanding,” ArXiv’18.

[22] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan,
and S. Vijayanarasimhan, “Youtube-8m: A large-scale video classification
benchmark,” ArXiv’16.

[23] “Cisco visual networking index: Global mobile data traffic forecast
update, 2016-2021 white paper,”

[24] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace
the history of 2d cnns and imagenet?,” ArXiv’17.

[25] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,”
MICRO’16.

[26] I. Laptev, “On space-time interest points,” IJCV’05.
[27] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and

its application to action recognition,” in MM’07.
[28] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning realistic

human actions from movies,” in CVPR’08.

[29] H. Wang and C. Schmid, “Action recognition with improved trajectories,”
in ICCV’13.

[30] Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation
with pseudo-3d residual networks,” in ICCV’17.

[31] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions
for action recognition,” TPAMI’17.

[32] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A closer
look at spatiotemporal convolutions for action recognition,” ArXiv’17.

[33] J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks,” in ICANN’14.

[34] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
ACM Sigplan Notices, vol. 26, pp. 30–44, ACM, 1991.

[35] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
HPCA’17.

[36] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in ISCA’16.

[37] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis
of a tensor processing unit,” in ISCA ’17.

[38] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects,” in
ASPLOS’18.

[39] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convolutional
neural network architecture with reconfigurable computation patterns,”
VLSI’17.

[40] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to
understand large caches,” 2009.

[52] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in ACM
SIGARCH Computer Architecture News.

[41] A. Yazdanbakhsh, H. Falahati, P. J. Wolfe, K. Samadi, N. S. Kim,
and H. Esmaeilzadeh, “Ganax: A unified mimd-simd acceleration for
generative adversarial networks,” in ISCA’18.

[42] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in ISCA’18.

[43] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning.,” in OSDI ’16.

[44] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in MM’14.

[45] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Berg-
eron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new
features and speed improvements,” ArXiv’12.

[46] M. Horowitz, “Computing’s energy problem (and what we can do about
it).” ISSCC, 2014.

[47] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian in HiPC’09.
[48] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable

and efficient neural network acceleration with 3d memory,” ACM SIGOPS
Operating Systems Review, vol. 51, no. 2, pp. 751–764, 2017.

[49] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284,
2014.

[50] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang, “Towards
a uniform template-based architecture for accelerating 2d and 3d cnns
on fpga,” in FPGA’18.

[51] H. Fan, X. Niu, Q. Liu, and W. Luk, “F-c3d: Fpga-based 3-dimensional
convolutional neural network,” in FPL’17.

[53] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in FPGA’15.

[54] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in FPGA’16.

[55] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation
and dataflow in fpga acceleration of deep convolutional neural networks,”
in FPGA’17.

