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ABSTRACT

Modern day computing increasingly relies on specialization to sa-
tiate growing performance and efficiency requirements. A core
challenge in designing such specialized hardware architectures
is how to perform mapping space search, i.e., search for an opti-
mal mapping from algorithm to hardware. Prior work shows that
choosing an inefficient mapping can lead to multiplicative-factor
efficiency overheads. Additionally, the search space is not only large
but also non-convex and non-smooth, precluding advanced search
techniques. As a result, previous works are forced to implement
mapping space search using expert choices or sub-optimal search
heuristics.

This work proposes Mind Mappings, a novel gradient-based
search method for algorithm-accelerator mapping space search.
The key idea is to derive a smooth, differentiable approximation
to the otherwise non-smooth, non-convex search space. With a
smooth, differentiable approximation, we can leverage efficient
gradient-based search algorithms to find high-quality mappings.
We extensively compare Mind Mappings to black-box optimiza-
tion schemes used in prior work. When tasked to find mappings
for two important workloads (CNN and MTTKRP), the proposed
search finds mappings that achieve an average 1.40x, 1.76x, and
1.29x (when run for a fixed number of steps) and 3.16x%, 4.19%, and
2.90x (when run for a fixed amount of time) better energy-delay
product (EDP) relative to Simulated Annealing, Genetic Algorithms
and Reinforcement Learning, respectively. Meanwhile, Mind Map-
pings returns mappings with only 5.32X higher EDP than a possibly
unachievable theoretical lower-bound, indicating proximity to the
global optima.
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1 INTRODUCTION

The compound effect of the slowing of Moore’s law coupled
with a growing demand for efficient compute has ushered in an
era of specialized hardware architectures. Due to their inherent
performance, energy, and area characteristics, these accelerators
are driving innovation in diverse areas such as machine learn-
ing [4, 20, 32, 38, 43, 69], medicine [22, 23, 41], cryptography [27, 61],
etc. They are seeing a wide variety of deployments ranging from
cloud to edge—forcing designers to make complex design decisions
to achieve their efficiency objectives.

Although they are specialized, accelerators are often flexi-
ble [21, 36, 52, 59, 95], designed to support different parameter-
izations of a single algorithm to even a range of algorithms within
or across domains. This flexibility forces architects to decouple
the act of designing the architecture from the act of mapping a
specific problem—a parameterized instance of an algorithm-onto
the architecture. This is shown in Figure 1. First, pre-fabrication,
architects choose architectural parameters to suit the budget and
deployment requirements of expected target problems—a process
referred to as Architecture Design Space Search. This can include
decisions such as the number of processing elements, on-chip buffer
sizes, network-on-chip topology, bandwidth to off-chip memory,
etc. Second, post-fabrication and based on the designed-in flexi-
bility of the hardware, architects or users map target algorithms
to the hardware—referred to as Mapping Space Search. These de-
cisions can include choosing how much of each buffer to allocate
for each data structure, mapping of computations to processing
elements, etc., and are analogous to writing/compiling programs
for general-purpose processors.
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Figure 1: Architecture design and algorithm mapping in hardware
accelerators.

Mapping space search is an important problem, and currently
faces severe scalability and performance challenges. To start, prior
work has shown that problem efficiency is very sensitive to the
choice of mapping [20, 36, 52, 59, 68, 69, 95]. Further, the same stud-
ies illustrate how optimal mapping varies significantly depending
on problem size and parameters (e.g., DNN model parameters), re-
source availability, performance and power requirements, etc. This
suggests that mapping space search will constitute an increasing
recurring cost, as accelerators are re-targeted for new problems.

Making matters worse, simply gaining intuition for how to
search through the map space, or how to pose the search to an au-
tomated tool, is an ad-hoc and expert-driven process. Accelerators
lack consistent hardware-software abstractions, such as instruction
set architectures (ISAs) in the general-purpose computing world,
and instead rely on bespoke configurable hardware components de-
signed to provide higher degrees of control and efficiency. Further,
different accelerators tend to have different degrees of configurabil-
ity in different hardware components, ranging from programmable
networks on chip [52], buffers [36, 73], address generators [100],
etc. While this may be suitable for experts with deep knowledge
of both the architecture and algorithm, it clearly does not scale to
non-experts programming new hardware with new algorithms.

Making matters even worse, while prior work has proposed
tools and algorithms (i.e., Mappers) for automatically searching the
map space, all existing approaches have serious limitations due
to search space complexity [3, 15, 36, 68, 102]. First, the search
space is often high dimensional (i.e., each degree of configurability
induces a dimension), causing a combinatorial explosion of possible
mappings and rendering exhaustive techniques ineffective [68].
Second, the search space is both non-convex (many local minima)
and non-smooth (not differentiable), forcing prior work to rely on
black-box optimization [30] approaches.

To summarize, while configurable accelerators have demon-
strated their potential, the lack of an efficient and high-quality
Mapper hinders broader adoption.
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1.1 This work

This paper addresses the challenges above by proposing Mind Map-
pings, a scalable and automated method to quickly and effectively
perform mapping space search.

As mentioned previously, the key challenge hindering prior work
is that mapping search space is non-smooth, forcing prior work to
resort to black-box optimization techniques. This is because the
accelerator cost function—which search algorithms use to evaluate
the cost of a given candidate mapping—is non-smooth. For exam-
ple, the cost function might be an architectural simulator or the
accelerator itself.

Mind Mappings addresses this challenge by constructing a dif-
ferentiable approximation of the cost function, called the surro-
gate [6, 75, 91]. Using the surrogate, Mind Mappings derives gradi-
ents for the cost function, with respect to candidate mappings, and
uses those gradients to perform a powerful first-order optimiza-
tion technique, Gradient Descent [53, 54], to quickly find low-cost
mappings.

The key insight here is that the differentiable surrogate of the
actual non-differentiable cost function can provide us with approx-
imate gradients, which are sufficient to guide the search along the
direction of steepest descent, even in the absence of true gradients.
This insight simultaneously improves map space search quality and
reduces map space search time, as gradients by definition point in
the direction of the greatest reduction in cost.

Crucially, Mind Mappings formulates both predicting the cost of
a mapping and finding the optimal mapping as learning problems,
thereby doing away with requiring expert knowledge in the target
domain.

This paper makes the following contributions:

(1) To the best of our knowledge, our work is the first to enable
target domain-independent mapping space search for pro-
grammable accelerators. We require neither expert knowl-
edge in the target application domain(s), nor any domain
specific heuristics for handling programmable hardware at-
tributes.

(2) To the best of our knowledge, our work is the first to for-
mulate mapping space search as a first-order optimization
problem, enabling an efficient gradient-based search that is
able to quickly find high-quality mappings.

(3) We extensively evaluate Mind Mappings across two target

algorithms—CNNs and MTTKRP—comparing against multi-

ple baseline search heuristics including simulated annealing

(SA), genetic algorithms (GA), and reinforcement learning

(RL). For CNNs and MTTKRP, the proposed search method

finds mappings with an average 1.40x, 1.76x, and 1.29x

(when run for a fixed number of steps) and 3.16x, 4.19x,

and 2.90x (when run for a fixed amount of time) better

energy-delay product over SA, GA, and RL, respectively.

To facilitate further adoption, we provide a reference im-

plementation of the Mind Mappings framework here: https:

//github.com/kartik-hegde/mindmappings.

—~
N
=

2 BACKGROUND

In this section, we formally define the algorithm-accelerator map-
ping space search problem and elaborate with an example.


https://github.com/kartik-hegde/mindmappings
https://github.com/kartik-hegde/mindmappings
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2.1 Algorithm-Accelerator Mapping Space

In this paper, we assume that a hardware accelerator a and a target
problem p is given, where a problem is a parameterized instance
of an algorithm. For example, if matrix multiplication is the target
algorithm, an example target problem is a matrix multiplication
between two matrices of fixed shape (dimensions), irrespective of
the contents of the matrices. We begin by defining a mapping m
and the mapping space M.

Definition 2.1. Mapping. A mapping m € Py X --- X Pp_j isa
D-tuple, where D is the number of programmable attributes of
the given accelerator a. Each element in the mapping vector, my
for d € [0,D) belongs to the domain of the d-th programmable
attribute, Py.

Definition 2.2. Mapping Space. Given an accelerator a and a target
problem p, we define a mapping space as

Mgp ={m e Py x---XPp_1|a(mi)==p(i)Viel,}

where I, denotes the possible inputs (e.g., all possible matrices with
a specific shape) to a problem p, a(m, i) denotes the accelerator’s
output given mapping m and input i, and p(i) denotes the golden
reference output given input i for problem p.

In other words, Mgy is the set of mappings that result in func-
tional correctness for the given problem p on the accelerator a.
We call such mappings valid for a and p and write My, as M for
short when the context is clear. Intuitively, the different m € M can
be thought of as different “programs” representing problem p on
accelerator a. An example of a mapping space is given in Section 3.

With this in mind, the size of the mapping space varies based on
the programmability of the underlying accelerator and the problem
p. On one extreme, the size of M (denoted |M|) can be 1 for a fixed-
function ASIC designed to execute one fixed problem. In general,
M| = O(I1ae[o,p) |Pal), where the number of attributes D and
the size of each attribute space |P,| is large. The Big-Oh captures
how some mappings in the Cartesian product of assignments to
programmable attributes may be invalid.

2.2 Mapping Space Search

Mapping Space Search is the combinatorial search problem to find
the mapping mop; € M that minimizes the cost f, where the cost
function f is the optimization objective set by the designer (dis-
cussed further in Section 2.3). That is,
Mopt = argmin f(a, m) (1)
meMagp

where the user specifies the problem p and architecture a. We
denote f(a, m) as f(m) for short. In theory, mapping space search
can be performed at compile time or at run time. In practice,
programmable accelerators today either perform the search com-
pletely offline, e.g., when compiling a new problem to the architec-
ture [36, 51, 80], or partly offline/partly online [66].

In this paper, we assume f is a function of a and p—not the
problem input i. This holds for several important workloads, e.g.,
kernels in dense tensor algebra such as dense matrix multiplication
and deep neural network training/inference [68]. However, it does
not hold when input-dependent optimizations, e.g., data sparsity,

1

5
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influence cost [37]. We consider efficient mapping space search for
input-dependent mappings to be important future work.

2.3 Cost Function

The cost function f (Equation 1) estimates the cost of running
the given mapping m on the given hardware accelerator a. This
serves as the objective for optimization in the mapping space
search. It is up to the designer to formulate the cost function
based on the design criteria. For example, the cost function can
be formulated as a weighted sum or product of several factors,
or as a prioritized order of measurable metrics [68]. For example,
fla,m) = ZIk(:_Ol Wi fr. (a, m) where K is the set of all the factors
considered by the designer and wy is the importance assigned to the
k-th factor. Factors can include various measures such as power, per-
formance, or meta-statistics such as the number of buffer accesses,
etc., and designers may choose to assign appropriate weights for
each of the costs based on the requirements/factors. For example,
if fi represents the number of DRAM accesses, wy might represent
the energy per DRAM access. Importantly, the function computing
each factor f;. need not be smooth, differentiable, etc.

3 EXAMPLE MAPPING SPACE: 1D-CONV

We now describe the mapping space for a hardware accelerator
designed to perform 1D-Convolution (1D-Conv) with energy-delay
product as the cost function. This represents a simplified version of
the accelerator and algorithm (Convolutional Neural Nets/CNNs)
that we evaluate in Section 5, and we will refer to the example in
Section 4 to explain ideas.
Algorithmically, for filter F, input |, and output O, 1D-Conv is
given as
R-1
Ofx] = Y I[x+r] +Flr] @)
r=0
0<x<W-R+1

for input width W and filter size R. Using the terminology in Sec-
tion 2.1, the 1D-Conv algorithm forms a family of problems, where
each problem p corresponds to a specific setting of W and R.

1D-Conv in Equation 2 can be represented as a loop nest:
for(x=0; x<W-R+1; x++) {

for(r=0; r<R; r++) {

O0[x] += Ilx+rl * FLrl; } }
Code 1: Untiled 1D-Convolution.

We represent the ordering of the loops in the above loop nest as
W — R, meaning iteration over W and R is the outer and inner loop,
respectively. Note that due to the commutativity of addition (ignor-
ing floating point errors), we can freely interchange the loops, i.e.,
asR— W.

We can also add additional levels to the loop to model tiling or
blocking. For example, if F cannot fit in a buffer, we can tile it as
shown here:
for(rc=0; rc<Rc; rc++) { // Rc=ceil(R/Rt);

for(x=0; x<W-R+1; x++) {

for(rt=0; rt<Rt; rt++) {
roff = rcxRt + rt;
O[x] += IL[x+roffl % FLroffl; } } }

Code 2: Tiled 1D-Convolution.
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Figure 2: A basic hardware accelerator with M processing elements,
on-chip buffer with N banks, and a NoC.

That is, we complete the 1D-Conv for an R; chunk of F at a time,
adding an outer loop over the number of tiles R.. This loop nest
is therefore written as R — W — R;. Beyond tiling, we can de-
scribe parallelism in the computation by conceptually pre-pending
parallel before a given loop(s), indicating that iterations of that
loop can run in parallel.

An example target accelerator for the 1D-Conv algorithm is
depicted in Figure 2. At a high-level, it has M processing elements,
an on-chip buffer with N banks allocatable to different tensors at
bank granularity, a flexible NoC that can be optimized for different
communication patterns such as broadcast, unicast, etc.

Let us assume that the accelerator’s programmable attributes
are:

(1) Py = R3: a 3-tuple indicating the percentage of banks allo-
cated to each of |, O, and F.

(2) P1 = Z3+: a 3-tuple representing the tile shape of I, O, and
F to be fetched from DRAM.! The + is to facilitate multiple
levels of tiling, if applicable.

(3) P2 ={W — R,R — W}:loop order for the untiled 1D-Conv
algorithm represented in Code 1. To support more loops
levels due to tiling (as in Code 2), we add additional tiled
loop orders to Py (e.g., Re = W — R;).

(4) P3 = Z+: the loop bound for each loop, e.g., Re, W +R— 1, R;
in Code 2. Note, we write this attribute explicitly for clarity.
In this example, loop bound can be inferred from the current
assignment to P1 and Po.

(5) P4 = {unicast, multicast, broadcast}®: NoC communicat-
ing patterns for each of the 3 tensors.

(6) P5 = Z+: Amount of parallelism per PE for each loop level.

Mapping Space. Given the above, one can construct a mapping
space Mg, p for the accelerator and specific 1D-Conv problem (i.e.,
the specific setting of W and R). The accelerator has D = 6 pro-
grammable attributes and the mapping space size is bounded by the
size of the Cartesian product of assignments to each programmable
attribute. As discussed in Section 2.1, the mapping space size will
be smaller than this upper bound, as some complete assignments to
programmable attributes are invalid, e.g., R < R must hold since
R; is a tile of R.

!Note that in 1D-Conv, tiles are 1-dimensional. Hence, shape is representable as a
scalar.

Hegde, et al.

Cost Function. In the above example, the cost of a mapping
f(m) is defined as energy * delay. This can be obtained by simu-
lators or analytical models that represent the actual hardware or
using the actual hardware itself. For example, Timeloop [68] (which
we use in our evaluation) is a tool that can calculate mapping cost
for algorithms representable as affine loop nests (e.g., convolutions).

3.1 Challenges in Mapping Space Search

0.03

0.02

0.01

Figure 3: Cost surface plot for the accelerator we evaluate in
Section 5 for CNNs. Darker red indicates higher EDP, and darker
blue indicates lower EDP. Mind Mappings approximates this non-
smooth surface with a differentiable surrogate to enable gradient-
based optimization.

A major challenge in mapping space search is the nature of cost
function f, which is non-convex and non-smooth. For example,
consider the 1D-Conv example from the previous sub-section. The
cost of a mapping f(m) is influenced by the various programmable
attributes Py in subtle ways. For example, consider Py, the attribute
that represents buffer allocation for each operand/result tensor |,
0, and F. If the F tensor is 1 KB in size and allocation falls short
of 1 KB, the mapping cost will see a significant energy bump as
valid mappings will be forced to tile F, requiring some operand(s)
to be re-fetched multiple times to fully compute O. In other words,
seemingly minor changes to mapping m can result in non-smooth
changes to the overall cost f(m).

To illustrate this, Figure 3 plots the cost surface for the pro-
grammable accelerator running Convolutional Neural Network
(CNN) layers that we evaluate in Section 5. In the figure, the x-
and y-axis represent different choices of tile sizes for two different
input tensors, while the z-axis represents the cost f in terms of the
energy-delay product (EDP). Evident from the plot, the search space
is spiky and non-smooth in nature. Due to this, obtaining useful
statistics such as the gradients (first-order), Hessians (second-order)
of the search space is not possible, requiring the search for optimal
mapping (Equation 1) to use black-box optimization approaches
such as Simulated Annealing [45], Genetic Algorithms [89], etc.
Making matters worse, the search space is clearly non-convex, i.e.,
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many local minima, making the search even harder. Given the
humongous search space size (102° in this example), black-box
optimization approaches struggle to find high quality mappings in
few iterations.

4 METHOD

Due to the non-smooth nature of the cost function described in
the previous sections, designers are forced to use black-box opti-
mization approaches to find optimal mappings. By definition of
being black box, they cannot take advantage of structure within
the accelerator cost function, which puts them at a disadvantage
in effective mapping space search. Mind Mappings circumvents
this by approximating the search space as a smooth, differentiable
function. This turns mapping space search into a white-box opti-
mization problem, and enables gradient generation to improve the
search.

Mind Mappings is a two-phase procedure, as shown in Figure 4.
We start with a target algorithm. The goal is to find low-cost map-
pings for a potentially unbounded number of target problems given
that algorithm. To accomplish this: First (Phase 1, Section 4.1), we
train a differentiable surrogate model to approximate the accelera-
tor’s cost function for all problems making up the target algorithm.
Second (Phase 2, Section 4.2), we perform Gradient Descent on the
surrogate model to generate low-cost mappings for the target prob-
lems. Phase 1 and 2 are performed offline and online, respectively.

To amortize surrogate training cost (Phase 1), we train the sur-
rogate to generalize to unseen problems and reuse the surrogate
across the potentially many target problems in Phase 2. For exam-
ple, given 1D-Conv from Section 3, Phase 1 trains the surrogate
on mappings corresponding to representative W and R values, so
that the surrogate will later be able to interpolate and return accu-
rate costs for mappings belonging to unseen W and R values. Then,
Phase 2 uses the surrogate to search for low-cost mappings for
those unseen W and R values. That is, the surrogate is trained once,
offline per target algorithm.

We now discuss Phase 1 and 2 in more detail. We rely on the
1D-Conv example from Section 3 to explain ideas.

4.1 Phase 1: Approximating the Map Search
Space

As discussed in Section 2.2, the cost function f that maps in-
put mappings to a designer-defined cost is non-smooth and non-
differentiable. To make f differentiable, which will allow us to
generate gradients, we use function approximation (FA) with dif-
ferentiable surrogates. FAs are often used to reduce a function’s
dimensionality, which has been shown to simplify optimization
problems in different fields such as reinforcement learning [10, 90].
It has also been used in prior works [15, 42, 55, 62] to improve the
speed of evaluation of f to enable rapid searches.

With FA, we generate a smooth, differentiable approximation of
the cost function, denoted f*, called the surrogate. Given a mapping
m and problem p, the surrogate predicts the cost ¢* = f*(m, p),
where ¢* approximates the actual cost, ¢ = f(m). Therefore, each
surrogate is specialized for a given accelerator and the target algo-
rithm, but should be able to return accurate costs for the different
problems making up the algorithm. Notice, p is specified as an input
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to f*. This is a notational convenience that will be important in
Phase 2.

While there are multiple choices of differentiable surrogate func-
tions, we use Multi-layer Perceptron (MLP)-based Deep Neural
Networks (DNNs) in this paper as they are known to be capable of
modeling high-dimensional functions and feature a mature training
infrastructure due to the recent advances in Deep Learning. We
leave the question of whether simpler, differentiable models are
sufficient as future work.

Figure 4, Phase 1, gives an overview of how to construct/train
the surrogate. At a high level: We construct a training dataset of
input mappings m and their associated costs ¢ = f(m), where f is
the accelerator’s reference cost model. Each element in the training
set is stored as a 3-tuple: mapping m, problem identifier p;; (from
which m was sampled) and reference model cost c.

The distance between the predicted cost, ¢*, and the actual cost ¢
is used to generate a loss, which is used to train the surrogate using
back-propagation [53]. The training procedure can be carried out
until satisfactory loss is reached, and well-studied techniques in
deep learning can be used to improve the speed of convergence [25,
86].

Superficially, the above process is a “standard” supervised train-
ing with Stochastic Gradient Descent (SGD), widely used in modern
deep learning approaches. Getting it to work properly for mapping
space search, however, entails addressing multiple issues, as de-
scribed below.

4.1.1 Generating the Surrogate Model Training Set. The first step
is to build a training set to train the surrogate model. We face the
following questions:

(1) Which map spaces should be used to populate the
training set? The naive approach is to populate the training set
with mappings associated with a single problem for the target al-
gorithm. This approach fails because the resulting surrogate will
not generalize to unseen problems, requiring us to re-train the sur-
rogate for each new problem we encounter. For example, a new
surrogate will be needed every time the W, R settings change for
1D-Conv—clearly undesirable. Instead, we generate training points
by uniformly sampling from multiple map spaces, thereby general-
izing the surrogate across the family of problems associated with
the target algorithm. We empirically observe that the model is able
to interpolate and predict correctly for problem instances it hasn’t
seen before.

(2) Based on the choice of map spaces, which mappings
should we sample to populate the training set? There are three
issues here. First, we must be able to check if a mapping is valid, i.e.,
belongs to a specific map space. For this, we assume there exists a
membership testing function isMember(m, p) for every accelerator
a which returns true if m € Mg, and false otherwise.

Second, we must decide whether to populate the training set
with only valid members of each map space—i.e., mappings that
are functionally correct for their given problem—or also consider
invalid mappings. In this work, we only populate the training set
with valid mappings. Considering invalid mappings may enable
the surrogate to better avoid functionally incorrect mappings in
Phase 2, e.g., by assigning them infinite cost. However, this may
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Figure 4: Mind Mappings search procedure. Phase 1: Training the surrogate model ¢* = f*(m, p;z) based on (mapping, problem id, cost)
tuples (m, p;q, c). DNN (surrogate) weights w are trained with back-propagation. Phase 2: Given a target problem p;,,ges, use the trained
surrogate model to iteratively guide a random initial mapping m@0 (“mapping at search iteration 0”) towards an optimal mapping mop,. In
each iteration, mQt is updated using back-propagation with a gradient V of f* based on mQt with a learning rate «. The trained model weights

w and the target problem p;yger are held constant in this phase.

face implementation challenges such as exploding gradients and
slow convergence [70].

Third, we need to decide on a sampling strategy to sample from
each map space. One option, which we use in this work, is to
sample uniformly at random. Specifically, given a problem p, we
sample from the associated map space M,y uniformly to generate a
mapping and re-sample if the mapping is not valid (see above). This
ensures a reasonable representation of the map space, but might
suffer from under-sampling from regions that are more important
from a training perspective. Other advanced sampling methods can
be used, such as sampling from a probability distribution trained
to maximize the amount of learning per sample [60]. As seen from
our evaluation (Section 5), uniform random sampling facilitates
training well and therefore we leave improved sampling methods
to future work.

(3) How to uniquely associate each mapping m with its
map space Mg, It is possible to have the same mapping m present
in multiple map spaces, where each mapping instance has a dif-
ferent cost c. Therefore, to ensure correct generalization of the
surrogate across different problems for the given algorithm, we
must uniquely identify each mapping in the training set with its
map space. For this, we need to tag each mapping m, added to the
training set, with a problem identifier p;;, unique to the map space
associated with its problem p. In this paper, we encode each p;4 as
the specific parameterization of the problem, e.g., a tuple indicat-
ing the W, R values associated with the problem for the 1D-Conv
algorithm (Section 3).

(4) How to calculate cost per mapping? To train the surro-
gate, we require a reference cost ¢ = f(m) that can be used to
calculate the loss w.r.t. surrogate’s predicted cost ¢*. This can be
estimated via running the problem with mapping m on the target
hardware or using a cost function estimator such as those described

in Section 2.3. As this is a one-time, offline procedure that gener-
alizes over different problems for the target algorithm, its cost is
amortized over multiple mapping space searches performed using
this surrogate.

We now describe input mapping vector and output cost rep-
resentation. We describe ideas and challenges here. The concrete
representations we use for our evaluation are detailed in Section 5.5.

4.1.2  Input Mapping Representation. As described in Section 2.1,
the mapping vector m is a D-tuple consisting of the accelerator’s
programmable attributes, which needs to be converted to a repre-
sentation that can be used to train the surrogate. There are two
issues here. First, while each programmable attribute P; can have
different representations, e.g., vector, integer, float, boolean, etc.,
the input to the surrogate needs to be a single vector of floats. We
resolve this by converting each attribute to a scalar or a vector
of floats, flattening multiple vectors into a final mapping vector
as needed. For example, P4 in 1D-Conv (Section 3) has 3 discrete
choices, which can be converted to a vector of 3 floats which are one-
hot encoded. The choice of float for the mapping vector datatype
isn’t fundamental; in what follows, we refer to each float/element
in the mapping vector as a value.

Second, in some cases, it may be desirable to have variable-
length mapping vectors for different problems (e.g., to encode vari-
able levels of tiling), but the input vector to the surrogate is often
fixed (e.g., as in a Multi-layer Perceptron). While we deal with
fixed-dimensionality mappings in this work, the above can be eas-
ily handled via embeddings [63], a widely used method to deal
with different input lengths in areas such as Natural Language
Processing and Recommendation Systems.

Finally, we normalize each value in each mapping to have mean 0,
standard deviation 1—in a process akin to input whitening [25, 50].
That is, let m"ii be the d-th value in the i-th mapping in the training
set, where m’ means the mapping m has been flattened into a vector
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of D’ values as described above. Then, we normalize each m;li with

respect to other m/,/.

4.1.3  Output Cost Representation. A crucial decision to make is to
choose a representation for the cost vectors c and c* that facilitates
a high quality surrogate. A straightforward approach, often used
by prior works, is to represent costs as a combined statistic or the
final target, such as EDP, performance/watt, etc.

Instead, we encode costs as a vector of meta-statistics as we
observed that this results in higher quality surrogates. For example,
for the surrogate we evaluate in Section 5, we represent cost as
a vector containing the energy spent accessing each level of the
memory hierarchy by each data type (e.g., input/output tensor
in 1D-Conv), compute utilization, total cycles, and total energy,
although the final metric of interest is EDP. We empirically found
that this rich output representation enabled the surrogate model to
achieve a 32.8X lower mean-square error to the ground truth EDP,
relative to surrogates that output EDP directly.

Additionally, we normalize the output cost vector with respect
to a theoretical lower bound cost for the target problem, to reduce
the variance in output values. We use a conservative lower bound
that assumes perfect data reuse and perfect compute utilization. For
example, for 1D-Conv from Section 3, the lower bound for cycles is
given by ((W — R+ 1) = R)/max_flops (assuming 1 cycle/FLOP),
whereas the lower bound for energy is given by (W+W —R+1+R)
times the energy needed to access each word of data once. We
evaluate an architecture with an inclusive buffer hierarchy, meaning
that the energy needed to access each word once the sum of the
energies per access for each level of the memory hierarchy. We
note that while this lower bound is possibly not achievable, it is
only meant to give us a good normalization metric.

Finally, similar to inputs (Section 4.1.2), each value in the output
vector is normalized to have mean 0 and standard deviation of 1
with respect to the corresponding values in other cost vectors in
the training set.

4.2 Phase 2: Gradient Search to find
high-quality Mappings

Phase 2, the online part of the search procedure, finds a low-cost
mapping mop; for the target problem pygrget, as depicted in Figure 4.
We achieve this by leveraging the differentiability of the surrogate
model f* (Phase 1) to obtain gradients, where gradients represent
the change in m that maximally reduces the cost f(m). With access
to gradients, unlike black-box optimization approaches, we can
perform powerful first-order optimization methods which, in effect,
incrementally guide any random valid mapping m towards mqp;
using Gradient Descent. The key insight here is that, while the cost
function representing the accelerator itself is non-differentiable, its
differentiable approximation f* should give us access to approx-
imate gradients that can guide the search along the direction of
steepest descent.

Gradient Descent with MLP-based Differentiable Surro-
gates. Section 4.1 described the procedure to obtain a differentiable
surrogate * by training an MLP to approximate the cost function.
We now use the surrogate to generate gradients that indicate the
direction of steepest descent with respect to a candidate mapping
m,ie., Vf*p, ,(m) = [of*/omy, .., of"/omp_1]. VI*p,, is computed
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using the chain rule across layers of the MLP (surrogate), assuming
the MLP parameters and p;; are fixed.

We use the generated gradients to perform a standard Gradient
Descent starting from a randomly-chosen initial mapping m@Q0
(“m at iteration 07), setting p;q = prarget- That is, we iteratively
compute Vf*y, ., (m@t) and combine it with m@t to form the
next candidate mapping m@t + 1. This process is shown in more
detail in Figure 4.

Projected Gradient Descent. Applying Gradient Descent to
mapping space search presents two issues. First, after applying
gradients, each value my in the mapping vector falls potentially
outside the domain of programmable attribute P;. To address this,
we round each m to the nearest value in P;. Second, after round-
ing each mg, the overall m may be invalid with respect to prarget,
ie,m¢ Map,, 4, To ensure the final mapping is valid, we check
mapping validity of mQt at each step t. If validity fails, we calculate
nearest neighbor valid mappings based on euclidean distance to
m@t and switch m@t to the nearest valid mapping before contin-
uing the search. This is a standard approach, often referred to as
Projected Gradient Descent [65], used in applications where gradient
may steer the parameters out of the valid region [9, 19].

Avoiding Local Minimas. Gradient Descent is infamous for
getting stuck in local minima for non-convex optimization prob-
lems [46] and our scheme runs the same risk. To handle non-
convexity, we introduce randomness at regular intervals throughout
the search. Specifically, we add an outer loop to the Gradient De-
scent algorithm described above, where after every N iterations, a
new random mapping vector is introduced. The decision to replace
the current mapping m@t with the newly sampled valid mapping
is based on a probability function accept that helps us balance the
trade-off between exploration and exploitation. The choice of N
and the probability function is up to the implementation. For ex-
ample, the designer may choose to gradually decay the probability
of accepting a mapping with higher cost than the already-seen
mappings over time, similar to Simulated Annealing. We follow
this strategy in Section 5.

Overall, Phase 2 performs the following steps until termination,
given a target problem prgrget:

(1) Choose a random valid mapping vector mQ@t where t = 0.

(2) Compute ¢* =f*(mQt, prarget) by forward propagation
through the MLP.

(3) Derive gradients using back-propagation via the surrogate
with respect to mQt, V = of*/om@Qs.

(4) Update the mapping vector as mQt + 1 = mQt — aV, where
a is a user-specified learning rate.

(5) Project m@t + 1 to the valid target map space.

(6) If t%N == 0, sample a random valid mapping m, 4,4
If accept(my g, mQt, T) returns true, update mQt +1 =
Myand, Where T is a temperature term that is decayed over
time.

(7) Increment t and go to Step 2 until completion.

5 EVALUATION

We now evaluate Mind Mappings. We design representative flexible
hardware accelerators using Timeloop [68] and search through
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their map spaces in the context of two target algorithms, while
comparing against several other search methods.

5.1 Experimental Setup

5.1.1 Algorithms. We evaluate Mind Mappings by evaluating two
target algorithms, Convolutional Neural Networks (CNN) and Ma-
tricized tensor times Khatri-Rao product (MTTKRP). We evalu-
ate two target algorithms to demonstrate generality, and selected
these two in particular given the ongoing effort in the archi-
tecture community to build efficient hardware accelerators for
CNN s [4, 18, 20, 26, 38, 69, 101] and MTTKRP [37, 87]. CNN lay-
ers feature similar, but higher-dimensional, computations as our
1D-Conv example from Section 3.

CNN-Layer. CNNs have seen widespread success in modern
Deep Learning applications such as image recognition, video an-
alytics etc. A CNN layer takes N 2D images of resolution W x H
with C channels and K filters of resolution R X S and produces an
output of size X X Y with K channels. Value of X and Y can be
calculated from W and H respectively as (W — R+ 1) /stride and
(H — S + 1)/stride, respectively. Mathematically, a CNN Layer is
given by Equation 3.

C-
Ol (k. x.y)] :Z

Osk<KOSx<W—R+LOSy<H—S+1

IIM|

Z_: Fl(k,e,r,s)] # [(e,x+r,y+s)] (3)

MTTKRP. MTTKRP [83] is a key kernel in Tensor Algebra that
is a bottleneck in applications such as tensor decompositions [47],
alternating least squares [11], Jacobian estimation [93], etc. MT-
TKRP takes a 3D tensor A, and matrices B & C to produce and
output matrix by contracting across two dimensions, as described
in Equation 4.
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Table 1: Target problems for each target algorithm.

CNN/MTTKRP [ N/I | KJ [HW/K [RS [ C/L

ResNet Conv_3 16 128 28 3 128
ResNet Conv_4 16 256 14 3 256
Inception Conv_2 | 32 192 56 3 192
VGG Conv_2 16 128 112 3 64
AlexNet Conv_2 8 256 27 5 96
AlexNet Conv_4 8 384 13 3 384
MTTKRP_0 128 | 1024 4096 - 2048
MTTKRP_1 2048 | 4096 1024 - 128

Table 1 shows the target problems we evaluated in Phase 2 for
each algorithm. Specifically, we chose layers from popular networks
such as ResNet [35], VGG [82], AlexNet [50], and Inception-V3 [92]
and representative matrix shapes (tall and skinny [85]) for MT-
TKRP.

Hegde, et al.

5.1.2  Hardware Accelerators. We model the programmable hard-
ware accelerator using Timeloop [68], which uses an analytical
cost model to provide a high-fidelity cost estimation for hardware
accelerators that implement affine loopnests.

The hardware accelerators we evaluate for both algorithms have
the same memory hierarchy, namely a two-level hierarchy with
512 KB of shared buffer and 64 KB of private buffer for each of 256
processing elements (PEs). Buffers are banked and can be flexibly
allocated to store any algorithm operand/partial result (tensors
in the case of our target algorithms). Each level of the memory
hierarchy is coupled with control and address generation logic to
support any loop order and tile size (similar to [36]). The Network-
on-Chip (NoC) provides parallelism across the PEs along any com-
bination of problem dimensions.

For each algorithm, we further specialize the datapath and con-
trol logic in PEs and the rest of the accelerator. For CNN-Layer,
PEs can consume 2 operands to produce 1 output per cycle, while
for MTTKRP, PEs consume 3 operands to produce 1 output per
cycle. We assume the accelerator runs at 1 GHz and that the design
objective is to minimize the energy-delay product (EDP) to evaluate
a problem.

5.1.3  Map Spaces. Given the accelerator architecture a and target
problem p, each mapping m € Mgy (Section 4.1.2) is defined by
the following programmable attributes for CNN-Layer/MTTKRP,
typical in recent accelerators [20, 36, 38, 52, 59, 69].

(1) Tiling: The tile sizes for each dimension (7/4) for each of
the 3 levels in the memory hierarchy (DRAM, L2, and L1I).
(21/12 attributes for CNN-Layer and MTTKRP, respectively.)

(2) Parallelism: The degree of parallelism for each dimension
across the PEs. (7/4 attributes.)

(3) Loop Orders: The ordering for each dimensions for each of
the 3 memory hierarchies. (3/3 attributes.)

(4) Buffer Allocation: The allocation of banks for each ten-
sor (3/4) for 2 levels of on-chip memory hierarchy. (6/8 at-
tributes.)

These attributes induce a map space that is too large to exhaus-
tively search. For example, the map space size for the ResNet Conv_4
layer (CNN-Layer) is ~ 10%® valid mappings.

To characterize the search space, we sampled 1 M samples from
each of the map spaces implied by Table 1 and computed the energy
of each sample, which resulted in a (mean, std) of (44.2,231.4),
(48.0,51.2) for CNN-Layer/MTTKRP respectively, when energy
was normalized to a theoretical lower-bound energy for the given
problem.

5.2 Search Methods and Comparison Metrics

We compare Mind Mappings with following popular search meth-
ods used in prior work.

(1) Algorithmic Minimum: Refers to the theoretical lower-
bound, possibly unachievable.

(2) Simulated Annealing (SA): A popular black-box optimiza-
tion method [45].

(3) Genetic Algorithms (GA): Another popular black-box op-
timizer that uses evolutionary learning [89].
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Figure 5: Iso-iteration comparison of various search methods compared to Mind Mappings (MM).

(4) Reinforcement Learning (RL): A popular unsupervised
learning approach.
(5) Mind Mappings (MM): This paper.

We elaborate on how we implement each search method in Appen-
dix A.

Two key metrics to judge a search method’s effectiveness are the
number of steps and amount of time needed to obtain an optimal
solution. Accordingly, we compare Mind Mappings against the
above methods on two key metrics:

(1) Iso-iteration search quality: All approaches are run for
fixed number of cost function evaluations. In case of Mind
Mappings, the cost function is the trained surrogate (Phase
1), whereas the other approaches query the actual cost func-
tion (timeloop).

(2) Iso-time search quality: All approaches are run until a
fixed wall-clock time.

5.3 Surrogate Model

As discussed in Section 4.1, we implement the surrogate as a Multi-
Layer Perceptron DNN. We run Phase 1 once for each target algo-
rithm. That is, one surrogate is trained for all CNN-Layer results
and a second is trained and used for all MTTKRP results. This
shows how the surrogate generalizes across problems for a given
algorithm. We elaborate on the details of the surrogate model and
the training procedure in Section 5.5.

5.4 Comparing Mind Mappings to Black-box
Optimization Approaches

We plot iso-iteration and iso-time comparisons between Mind Map-
pings (MM) and the other search techniques (Section 5.2) for dif-
ferent problems (Table 1) in Figures 5 and 6, respectively. In both
figures, the y-axis represents normalized EDP with respect to the
algorithmic minimum for that problem (Section 5.2). The x-axis
represents iterations and time, respectively. To isolate the effects
of randomness, each method was run 100 times and the averaged

results are plotted, i.e., for each iteration across the 100 runs, we
average the EDP across the runs.

5.4.1 lIso-iteration Comparison. Figure 5 shows iso-iteration com-
parisons for all the search methods for every target problem repre-
sented in Table 1. Overall, MM outperforms SA, GA, and RL with
mappings that have 1.40x, 1.76x, and 1.29x lower EDP respec-
tively, on average. Further, solutions proposed by MM are only
5.3x away from the (possibly unachievable) algorithmic minimum.
MM has a distinct advantage in that it performs a guided search
using the approximate gradients derived from the surrogate model,
where gradients by definition point at the steepest descent.

For CNN-layer based problems, MM converges to much better
solutions compared to other approaches and does so within 1000
iterations. The speed of convergence is the key characteristic that
demonstrates the effectiveness of gradients and the guided nature
of the search. More importantly, MM performs well on every target
problem (layer shape for CNN-layer); indicating that the surrogate
indeed generalizes and generates useful gradients across the family
of problems associated with the target algorithm.

We note that for MTTKRP-based problems, MM converges to
slightly better solutions compared to other approaches. MTTKRP-
based problems have much smaller map space sizes (~ 10'? for
MTTKRP_0 vs. ~ 1025 for ResNet Conv_4) and much lower vari-
ance in their EDP (standard deviation of 51.2 vs 231.4 across a
dataset of 1M samples; c.f. Section 5.1.3), pointing to a possibly
simpler mapping space search. In such cases, black-box optimiza-
tion approaches are competitive with MM in terms of iso-iteration
search quality. However, MM still provides good solutions much
faster than other approaches in terms of iso-time search quality, as
we will see in Section 5.4.2.

Other methods have known weaknesses, and sometimes map
space search-specific weaknesses, that may be contributing to their
lower search quality. Specifically: SA suffers from an inefficient
traversal in the search space due to the unguided nature of search.
Not only is the performance of GA sensitive to the choice of ini-
tial population, but GA also heavily relies on an assumption that
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Figure 6: Iso-time comparison of various search methods compared to Mind Mappings (MM). Note the x-axis is log scale.

combining two strong attributes in two mappings (e.g., mfi and m]d)
together will make an individual (m’) stronger. However, this is
not necessarily true in mapping space search. For example, a good
tiling for one loop order may not do well when combined with
another loop order. RL performs well compared to other black-box
approaches, thanks to its superior heuristics using the actor-critic
model based on deep deterministic policy gradient (DDPG) [56].

5.4.2  Iso-time Comparison. Figure 6 performs an iso-time study
by plotting time as the x-axis (note the log scale) when all search
methods are run on an Intel Xeon E5-2637 v4 CPU. Overall, MM out-
performs SA, GA, and RL by 3.16x, 4.19x%, and 2.90X respectively
on iso-time metric when run MM is run until convergence (62.5 sec-
onds). This is possible since MM does not need to query the expen-
sive cost function (timeloop) every step, unlike other approaches.
Instead, MM uses the surrogate model to predict meta-statistics
at every step (Section 4.1.3), which in turn generates gradients to
guide the next step.

Accordingly, we find that MM is 153.7X, 286.8%, and 425.5X
faster per step than SA, GA, and RL respectively. With recent hard-
ware/software advances in Deep Learning, the gap between MM
and other approaches can further widen by using state-of-the-art
infrastructure instead of a CPU, as in this evaluation. While RL
outperforms SA/GA in iso-iteration search quality, the per step cost
of RL is significantly higher than MM. To summarize: MM not only
generates higher-quality mappings compared to other approaches,
but generates those mappings faster.

Using Surrogate Models for Black-box Approaches. We
note that it is possible to improve traditional black-box methods in
terms of time-per-step by using a surrogate, as explored in a several
prior works [3, 15, 62] (refer to Section 6.1). While such surrogates
are not beneficial in finding better mappings (i.e., will not improve
iso-iteration search quality), they enable more cost function queries
per unit time, which improves iso-time search quality.

5.4.3  Summary. Overall, we note four key takeaways:

(1) Generality: Mind Mappings generalizes over different algo-
rithms, architectures, and target problems, as demonstrated
by the search performance.

(2) Quality of Solution: Mind Mappings finds better/as good
mappings compared to other popular methods.

(3) Optimality: The Mind Mappings returns mappings that
are within 5.3 of the possibly unachievable lower bound,
suggesting they are close to the achievable global optimum.

(4) Time per Step: Mind Mappings uses a surrogate model
instead of the (expensive) accelerator cost function at every
step, allowing it to perform more steps per unit time relative
to other methods.

5.5 Surrogate Model

We now provide details for the MLP used as the surrogate, and show
sensitivity studies used to determine the MLP’s training procedure
and architecture.

Input and Output Vectors. The input mapping vector is 62/40
values in length for CNN-Layer/MTTKRP, respectively, which in-
cludes the representation of the problem id, tile sizes, parallelism,
loop ordering, and buffer allocations. We elaborate on the input
vector representation for CNN-layer below.

(1) Problem ID (p;;): Py = Z": a 7-tuple indicating the problem
shape (N, K,C,H, W, R, S; see Table 1).

(2) Tile Sizes: Py = R2!: a 21-tuple representing what factor
larger each tile dimension is relative to the corresponding
dimension in the next level of the memory hierarchy (e.g., Rc
in the 1D-Conv tiled example in Code 2). There are 21 factors,
for the 7 dimensions in the 3-level memory hierarchy.

(3) Parallelism: Po = Z": a 7-tuple to indicate the degree of
spatial parallelism for each dimension. Spatial parallelism is
represented in terms of a factor for each dimension, similar
to how tile sizes are represented (above).

(4) Loop Order: P3 = Z2!: a 21-tuple indicating the loop order,
represented as a permutation of the 21 (7 dimensions times
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Figure 7: Experiments to determine the DNN topology and the loss function.

3 levels of memory) loops. For example, in 1D-Conv W — R
is represented as [0, 1], and R — W is 1, 0.

(5) Buffer Allocation: P4 = RS: a 6-tuple indicating the per-
centage of banks in each of the 2 levels of on-chip memory
allocated to each of the 3 tensors (I, O, and F in Equation 3).

The output cost vector has 12/15 neurons for CNN-Layer and
MTTKRP, respectively. Each neuron represents the energy spent
in accessing a specific level of the memory hierarchy (3) for each
input/output tensor (3/4), overall energy, compute utilization, and
overall cycles for execution. Inputs and outputs are normalized
over the dataset to have a mean of 0 and standard deviation of 1, as
discussed in Section 4.1.

DNN Topology and Training. We choose a 9-layer deep MLP
with [64,256,1024,2048,2048,1024,256,64,12/15] neurons in each layer
for CNN-Layer/MTTKRP, respectively, as the surrogate model
based on a grid search. We train the MLP for 100 epochs with
a learning rate of 1072, which is decayed by a factor of 0.1 every
25 epochs, and a batch size of 128. We use the Stochastic Gradient
Descent (SGD) optimizer with a momentum value of 0.9. Loss over
the training duration is depicted in Figure 7a. The MLP converges
at around 60 epochs, and the test loss closely follows the train loss,
indicating that we do not overfit.

Dataset. We train the model with 10 M samples drawn with uni-
form random probability from the space of representative problems
associated with the target algorithm (Section 4). “Representative
problems” means we sample from a range of typical values for
each parameter making up the problem (e.g., the N,K,C,H, W, R, S
dimensions for CNN-layer). For example, we randomly sample the
value of K for CNN-layer from the range (32,5121, which should
cover the typical range of K in practice [35, 50, 82]. That Mind
Mappings performs well given this methodology suggests that the
surrogate is able to interpolate and predict costs for unseen com-
binations of problem parameters. Figure 7c compares the search
performance on surrogate models trained with 1 M, 2 M, 5 M, and
10 M samples. While the datasets with more than 5 M samples lead
to a well-trained model for this problem, surrogates used for the
evaluation were trained with 10 M samples. We note that, even
when the dataset size is smaller than 5 M, search quality is not
significantly hampered.

Loss Function Choice. We use the Huber loss [40] function as
the loss criterion for training with the SGD optimizer. Figure 7b

compares the performance of several popular loss functions used in
regression such as the Mean Squared Error (MSE) and Mean Absolute
Error (MAE). Interestingly, MSE loss, a widely popular loss function
used in regression problems, performs poorly in our setting. We
attribute this to the fact that MSE greatly punishes outliers, leading
to a large variance in loss and instability in training. By contrast,
mean absolute error punishes small variations, leading to sub-par
performance. Huber loss is similar to MSE when variations are
small and is similar to MAE when the variations are larger, thus
creating a good balance between the two loss functions.

Model size. When weights are represented as 32 bit floats, the
surrogate model takes 35 MB of storage. With recent advances
in pruning and quantization [32, 33], the model can be likely be
compressed significantly. Therefore, we believe that model size
should not be a constraint in adopting Mind Mappings for real
world applications.

6 RELATED WORK

We now describe prior work studying mapping space search as
well as related search techniques applied to other problems. We
summarize the former in Table 2.

6.1 Mapping Space Search

To overcome the challenges in mapping search space, prior works
use two main approaches: (i) reduce the time to evaluate the cost
function, and (ii) avoid exhaustive search by adopting better heuris-
tics.

6.1.1 Faster cost estimation. For unguided mapping space search
techniques that rely on exhaustive search or black-box methods,
evaluating more mappings is the key to find higher-quality map-
pings. However, a key challenge is that the cost to evaluate a map-
ping using the actual hardware or a representative simulator is
non-trivial. To get around this, prior works use several techniques,
described below.

dMazeRunner [24], Timeloop [68], GAMMA [44] use analytical
models built by domain experts that are faster to evaluate than the
actual hardware, and are sufficiently representative and flexible
to support different mappings. However, building such analytical
models is difficult and requires strong domain expertise. Some other
works instead do away with domain expertise requirements by
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Cost Function Search Heuristic

Work ‘ Problem Domain
FlexTensor [102] Tensor Compilation
Tiramisu [7] DNN Compilation
Gamma [44] DNN Mapping Space Search
TensorComprehensions [97] DNN Compilation
dMazeRunner [24] DNN Compilation
Timeloop [68] Affine loop nests
TVM [15] DNN Compilation
RELEASE [3] DNN Compilation
Adams et. al [2] Halide [76] Compilation
Mind Mappings (ours) Domain Agnostic

Actual Hardware
Actual hardware

Reinforcement Learning
Beam Search

Analytical Genetic Algorithm
Actual hardware Genetic Algorithms
Analytical Pruned Search
Analytical Pruned Search
Gradient Boosted Trees Simualted Annealing

Gradient Boosted Trees
Multi-Layer Perceptrons
Multi-Layer Perceptrons

Reinforcement Learning
Beam Search
Gradient-based Search

Table 2: Related works in Mapping Space Search. Mind Mappings differentiates from other works by enabling a first-order
optimization using Gradient Descent with a differentiable surrogate.

leveraging machine learning to build an approximate cost function.
For example, AutoTVM [15] and RELEASE[3] use gradient-boosted
trees [14]. On the other hand, Adams et al. [2] use Multi-layer
Perceptrons (MLPs). We note that while we also use MLPs to build
the surrogate, we utilize the differentiability of the surrogate to
perform a guided search.

6.1.2  Mapping Space Search with Heuristics. Orthogonal to tech-
niques mentioned in Section 6.1.1 that speed up the cost evaluation,
prior works also develop custom/learnt heuristics to improve the
search itself, so as to avoid brute-force search. dMazeRunner [24],
Marvel [12] and Timeloop [68] prune the search space to reduce
the number of mappings that need to be evaluated using domain
expert knowledge. The key idea is that points in the search space
can be eliminated without evaluation, e.g., tile sizes that do not fit
in the on-chip buffer. Again, this solution is difficult to scale since
it requires extensive domain expertise to create rules to prune the
search space.

Several prior works leverage black-box optimization methods
to perform the search. For example, AutoTVM uses parallel simu-
lated annealing [45] (SA) to search through the map space. Open-
Tuner [5] is a program auto-tuner that uses the AUC Bandit Meta
technique to combine several methods such as differential evolu-
tion. RELEASE [3] and FlexTensor [102] both use Reinforcement
Learning (RL) as the cost heuristic to guide the search. Tiramisu [7]
and Adams et al [2] both employ beam search. Finally, TensorCom-
prehensions [97] and GAMMA [44] use Genetic Algorithms [39],
which are a popular approach used in combinatorial optimiza-
tion [29, 64, 88].

For all of the above: by definition of being black box, heuristics
can only guide the search based on previously visited samples, and
therefore require a large number of samples to perform well. As
demonstrated in Section 5, Mind Mappings outperforms SA, GA,
and RL by utilizing powerful gradient-based optimization with the
differentiable surrogate.

6.2 Related Works in other Areas

Beyond mapping space search, the combinatorial search repre-
sented in Equation 1 is widely found in other areas such as neural
architecture search [103], device placement [72], etc., and insights

from related works in these areas can apply to the mapping space
search problem.

Surrogate Modeling. Using surrogates for solving black-box
optimization problems has been well explored [49]. To predict the
performance of a program on a CPU, Ithermal [62] and Difftune [78]
use Recurrent Neural Networks, Ipek et al. [42] use Artificial Neural
Nets, and Lee et al. [55] use regression modeling. Deep generative
models are proposed as a surrogate in [81], which are differentiable
approximations. Function approximation or surrogate modeling
has been at the core of modern Reinforcement Learning methods
to approximate the large state-space present in real-life problems.
Similarly, Mind Mappings uses a differentiable surrogate, while
carefully tuning the supervised training methods to adapt to the
mapping space search problem.

Search Heuristics. Black-box approaches such as Simulated
Annealing, Genetic Algorithms [29, 64, 88], Bayesian Optimiza-
tion [72, 77, 79], etc., have been widely used in different applications.
Recent advances in Reinforcement Learning (RL) have influenced
several works [98, 103] to adopt the same, with promising results.
Several works have explored gradient-based methods [57, 78, 81, 99],
in spite of the cost function being non-differentiable. For example,
FBNet [99] uses Gumbel-Softmax [60] to make the discrete choices
in their problem differentiable, thereby obtaining gradients.

While gradient-based optimization applied to combinatorial opti-
mization problems with black-box cost functions is not new [17, 31,
57, 58,78, 81, 94, 96, 99], adapting this to the mapping space search
problem—the focus of this paper—is new and faces non-trivial chal-
lenges (Section 4).

7 CONCLUSION

This paper proposed Mind Mappings, an efficient method for per-
forming algorithm-accelerator mapping space search. The key idea
is to approximate the non-differentiable accelerator cost function
with a differentiable surrogate, and to use that surrogate to perform
a powerful Gradient Descent-based search.

While Mind Mappings significantly closes the gap to finding
optimal mappings quickly, there is still gap left to close. In par-
ticular, Section 4 details several areas where the method can be
further optimized, ranging from improved sampling methods for
training the surrogate to more efficient encodings of accelerator
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programmable attributes. Long term and with these refinements,
we hope that the methods in this paper advance mapping space
search to a level closer to its more mature cousin, compilation for
general-purpose devices.
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Appendices

A EVALUATION: POINTS OF COMPARISON

We now provide implementation details for each search method
used in Section 5.

Algorithmic Minimum. Our baseline represents the theoret-
ical lower-bound EDP for the given accelerator, algorithm and
problem. We construct this oracle EDP by taking the product of
the minimum energy and minimum execution cycles. The min-
imum energy is achieved when each input data is read only
once and each output data is written only once at each level
in the memory hierarchy. The minimum execution cycles are
achieved when PEs maintain 100% utilization, i.e., when cycles
equals required_flops/(flops_per_pe * num_pes).

Note that in practice, one usually trades-off energy for cycles and
cannot achieve the best of both worlds. Thus, the above algorithmic
minimum is likely unachievable. We do not calculate the achievable
lower-bound EDP, as this requires an intractable exhaustive search.

Simulated Annealing (SA). We implement SA in Python using
a popular library simanneal [74]. For each problem evaluation, we
let the library perform auto-tuning to get the best hyper-parameters
for SA such as the temperature and annealing factor. We interface
the library with the Mind Mappings tuner to perform mapping
space search.

Genetic Algorithm (GA). We implement GA in Python using
DEAP [28], a popular GA library. Based on the extensive literature
on parameter tuning for GA [13, 16, 34, 67, 84] and a grid search,
we set an initial population size of 100 and crossover/mutation
probabilities of 0.75/0.05, respectively. Each individual is a mapping
ranked based on fitness, which represents the optimization objec-
tive, EDP. Every iteration, we perform a cross-over and mutation
over the population. A cross-over results in swapping attributes
of one individual with the other while a mutation is implemented
as a .05 probability of a random update for each of the mapping’s
attributes. At the end of each generation, individuals are chosen
based on their fitness for the next generation.

Reinforcement Learning (RL). We implement RL in Py-
Torch [71], based on the Deep Deterministic Policy Gradient
(DDPG) [56] implementation from HAQ [98]. In the RL setting,
the mapping problem is modeled as a Markov Decision Process
(MDP) [8], where each mapping is a state in the MDP, an action
results in a move to a target state and the cost of the mapping is the
reward. In each episode, the RL agent starts from a random initial
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state, takes an action to move to a target state and updates its policy
based on the reward. In this process, the agent learns the optimal
action to take given a state in the space. The learning process uses
the actor-critic method [48], which is a widely-used policy gradient
algorithm. The actor and critic functions are approximated with
two fully-connected DNNs with 300 neurons respectively.

Mind Mappings (MM). We implement Mind Mappings (Sec-
tion 4) using a trained surrogate model (elaborated in Section 4.2) as
described in Section 4.1. We inject randomness at an interval of ev-
ery 10 iterations to avoid local minimas, as described in Section 4.2.
We use simulated annealing with a temperature of 50 initially to de-
cide the acceptance of random injections, which is annealed every
50 injections by a factor of 0.75. We use a learning rate of 1, and
we do not decay the learning rate throughout the procedure. We
choose the learning rates and injection interval via a grid search.

B MIND MAPPINGS API

The Mind Mappings API exposes an optimization framework for
mapping space search that can be used in compilers and frameworks
targeting a specialized hardware accelerator, such as TVM [15],
PyTorch [71], TensorFlow [1], etc. A surrogate model is trained
offline for the target algorithm-accelerator pair to approximate
mapping cost, using techniques described in Section 4.1. Then,
during the compilation, the Mind Mappings API takes the trained
surrogate model and the target problem p as input and returns a low-
cost (ideally optimal) mapping mp; that minimizes the problem’s
execution cost on the given accelerator.

The Mind Mappings API requires the following routines: (1)
getMapping: gives a random valid mapping, (2) isMember: checks
if a mapping is valid, and (3) getProjection: returns a projection
from an invalid mapping to the nearest valid mapping. We have
open sourced the Mind Mappings framework here: https://github.
com/kartik-hegde/mindMappings.
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